THE LIFE HISTORY OF GRIFFITHSIA BORNETIANA.

Dissertation submitted to the Board of University Studies of the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy,

by

I. F. Lewis.

1903.

--oo--
The red alga, *Griffithsia Bornetiana*, was first described by W. G. Farlow ('77). It has been reported as occurring commonly from northern Massachusetts (COLLINS, '06, p. 50) south to Long Island Sound, and has been recorded (1) from New Jersey (BRITTON, '81). It forms rosy tufts, 2.5 to 15 centimeters high, on rocks, "corals, sponges, shells and occasionally on Zostera" (FARLOW, '79, p. 131). South of Cape Cod it is found growing from one to four feet below low water mark, in protected situations such as the Little Harbor at Wood's Hole, Mass., and on rocks in more exposed localities.

The present investigation was begun in 1905 on material collected at Cold Spring Harbor, New York, by D. S. Johnson in 1902, and has been continued during 1906 and 1907 at Wood's Hole and at the Johns Hopkins University.

In all plants examined, with two exceptions noted below, the antheridia, cystocarps, and tetraspores are borne on separate individuals, which may be readily distinguished with the aid of a hand lens. The male plant is smaller and more compact than either the female or tetrasporic

(1) The form reported from as far south as the Barbadoes by Mr. F. C. VICKERS ('05) is believed by Dr. FARLOW not to be identical with *G. Bornetiana*.
plant, and may be identified by the abrupt terminations of the filaments (fig. 1). It rarely becomes more than 4 centimeters high. The female plant is more loosely tufted than the male, and reaches a much larger size, becoming 12 to 15 centimeters high. The cystocarps form deep red dots at the sides of the nodes (fig. 2). The filaments of the female plant do not end abruptly, but become gradually smaller toward their tips (fig. 3). The tetrasporic plant is more slender than the female and to the eye more nearly like it than the male. It may be distinguished by the whorls of tetraspores, which form complete rings at the nodes (fig. 4). The tetrasporic plant, like the sexual individuals, sometimes produces reproductive organs when consisting of but 10-20 cells and having a height of less than half a centimeter.

One plant was seen in which a few antheridial branches occurred, while the majority of the filaments bore numerous procarps and cystocarps. In another case, most of the branches produced antheridia, but a considerable number bore at the nodes rings of cells resembling in all particulars tetraspore mother cells, with the involucral rays characteristic of the tetrasporic sorus. These tetraspore-like structures are described in detail on pages 77-79.
Griffithsia Bornetiana becomes conspicuous at Wood's Hole in the first half of July, and grows rapidly until it reaches its maximum development about the first week in August. Towards the middle of August the plants of all ages cease to produce new branches and slowly become disorganized, losing their rich pink color and becoming easily detached from the substratum. At this season great quantities are washed up on exposed points like Nobska Point at Wood's Hole. After being torn loose from their fastenings, the plants float about in the water for days or even weeks, continuing to produce spores which were shown by experiment to be capable of germination. At this season, the tetrasporic plants frequently show a very robust habit, forming spherical masses upwards of 15 centimeters in diameter.

The spores develop quite rapidly in the open. Bits of cotton cloth, tied to piles near mature plants showed in two weeks' time sexual plants with ripe antheridia and carpospores, and tetrasporic plants with mature spores. The largest of these plants showed 3 orders of branching, and consisted of as many as 500 cells.

A noteworthy fact about the occurrence of the various forms is that tetrasporic plants are always more abundant, as well as on an average larger than sexual plants. During the first two weeks of August, 1907, more than 500 plants
were collected at random, care being taken to collect every plant seen, and not to select the larger specimens. On one occasion 352 individuals were brought into the laboratory and sorted carefully. Of these 321 were found to be tetrasporic, 15 cystocarpic, and 16 antheridial. At another time more than 200 plants showed about the same relative proportions. In other words, there is on an average an equal number of antheridial and cystocarpic plants, and for each sexual plant about ten tetrasporic ones. An exact count was not kept of plants collected earlier in the season, but there seems to be no doubt that tetrasporic plants greatly predominate in number at all seasons.

The same relations are shown quite strikingly by Chondria parvula and Chondria tenuissima at Wood's Hole, and will probably be found to obtain in many other red algae. Similar numerical preponderance of tetrasporic plants has been noted in Laurencia by PHILLIPS (96), in Polysiphonia at Naples by OLTMANNS (04, p. 650), and in Corallina by SOLMS ('01). Professor Farlow states that among the red algae, "tetrasporic plants are a good deal more common than sexual plants, and, in decidedly the majority of species which I have examined, I have had to look through a mass of tetrasporic plants before coming to any bearing sex-
ual organs. In the great majority of Floridaceae the chances are decidedly in favor of finding tetraspores rather than sexual organs."

METHODS.

Of various fixing fluids employed, the weak chrom-acetic osmic acid mixture was found to be best for cytological details (YAMANOUCHI, '06a, p. 425). The time of fixation varied from one to ten hours. Paraffin sections 3 and 5 μ thick were used almost exclusively for the finer details of cell structure. Grosser anatomical features were found to be best made out from mounts in toto. The most successful stain employed was Heidenhain's iron alum haematoxylin (2 hours in the alum solution, 4 hours in the stain), followed by eosin in clove oil, as recommended by Miss Fraser ('07). For some purposes, good differentiation was obtained by following the haematoxylin with gentian violet and extracting the violet with the eosin-clove oil solution.

Difficulty was experienced in obtaining material showing abundant nuclear figures. Plants brought into the laboratory and fixed at all hours after having been kept in running water showed almost no mitoses. Favorable material was obtained by fixing in the field at eleven or twelve o'clock at night.
VEGETATIVE CHARACTERS.

The thallus forms a hemispherical tuft, and is composed of much branched filaments, which are made up of large swollen cells placed end to end in series. The filaments radiate from a common point of attachment, the holdfast. In a plant of average size, from the base to the apex of a single filament, exclusive of the branches, there are twenty to thirty cells; in large specimens the number of cells in a single filament may be twice as great.

The cells differ greatly in shape and size in different parts of the filaments (fig. 4). Toward the base of the plant they are approximately cylindrical below and much swollen toward the upper end. The cells nearer the tip of the filament become shorter and relatively thicker, of an obovate shape, and of a deeper color. Those cells of the female plant which bear the older cystocarps become very much swollen toward their upper ends. In the male plants the terminal cells bearing the antheridia are almost globose. The following table gives a general idea of the sizes of the various cells in a filament composed of 20 cells:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tetrasporic and cystocarpic plants</td>
<td>.06 mm.</td>
<td>.06 mm.</td>
<td>2.5 mm</td>
<td>2.5 mm</td>
<td>1.25 mm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>.18</td>
<td>.19</td>
<td>.5</td>
<td>.25</td>
<td>.25</td>
<td>.125</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>.25</td>
<td>.4</td>
<td>.4</td>
<td>.25</td>
<td>.25</td>
<td>.125</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>.32</td>
<td>.6</td>
<td>.4</td>
<td>.2</td>
<td>.24</td>
<td>.125</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>.32</td>
<td>.16 mm.</td>
<td>1.0</td>
<td>.45</td>
<td>.25</td>
<td>.15</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>.4</td>
<td>.2</td>
<td>1.15</td>
<td>.45</td>
<td>.25</td>
<td>.20</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>.4</td>
<td>.2</td>
<td>.45</td>
<td>.25</td>
<td>.25</td>
<td>.20</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>.45</td>
<td>.2</td>
<td>1.6</td>
<td>.5</td>
<td>.18</td>
<td>.225</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>.52</td>
<td>.16</td>
<td>2.0</td>
<td>.55</td>
<td>.16</td>
<td>.25</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>.54</td>
<td>.15</td>
<td>2.5</td>
<td>.6</td>
<td>.15</td>
<td>.30</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>.58</td>
<td>.16</td>
<td>3.2</td>
<td>.6</td>
<td>.15</td>
<td>.30</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>.64</td>
<td>.2</td>
<td>2.5</td>
<td>.65</td>
<td>.24</td>
<td>.25</td>
</tr>
</tbody>
</table>

The cell wall responds to the usual tests for cellulose. After the death of the cell, the wall swells greatly in aqueous fluids. When so swollen, it shows a plainly lamellate structure (fig. 5), similar to that described for Bornezia by Correns ().

The cytoplasm forms a thin layer over the inner face of the free portion of the cell wall, averaging 6 μ in thickness in the older cells. On the cross wall it forms a thickened circular pad; adjoining pads are in communication through the intercellular pores. The cytoplasmic pad over the upper cross wall averages in the larger cells 10 μ in thickness in the center, becoming thinner toward the edges. On the lower cross wall the pad is much thinner, averaging about 3 μ in thickness. The pads are about evenly divided into a granular layer adjoining the sap-
vacuole, and a denser homogeneous layer next the cross wall (fig. 8). Nuclei are quite abundant in the granular layer but are not of usual occurrence in the homogeneous portion of the pad. Spherical bodies, probably of a proteid nature, of various sizes, occur commonly in both layers of the cytoplasm over the cross walls.

In Griffithsia barbata, BERTHOLD ('86) found the cytoplasm divided into a clear outer layer and a granular inner layer, the latter containing the nuclei and the chromatophores. This seems to be the usual arrangement of the protoplasmic elements in the coenocytes of algae. In Griffithsia Bornetiana the cytoplasm becomes plainly differentiated into two layers only where it reaches a considerable thickness, as in the thickened pads mentioned above and in very young cells in which the sap-vacuole is still small.

Intercellular connections are conspicuous in living as in stained specimens by reason of the peculiar plugs which close the otherwise open pit between the cells. Griffithsia is an unusually favorable form in which to observe the intercellular connections because of their large size. Evidence presented below is believed to be strongly in favor of the view, doubted by many workers,
that even the older cells are actually in physical and organic connection through the large open pores in the cross walls.

A typical intercellular connection is shown in fig. 6. The pore in the cross walls is closed on each side by a disk, which is the "stopper", or "plug" of ARCHER ('80). This disk is in direct contact with the thickened pad of cytoplasm lying on the cross wall. Connecting the disks is a broad strand of thin clear cytoplasm, or, in some cases, several smaller strands (fig. 7.). In several instances, bits of the protenid substance normally present in the pad have been found in the cytoplasmic strand which connects neighboring disks, apparently having been fixed in transit from one cell to another (fig.8). The middle lamella mentioned later as being formed in some cases in cell divisions has not been demonstrated in the older intercellular connections.

The size of the pore varies with the size of the cells which it connects. The average diameter of the disks, which is the same as that of the pore, is about 11\(\mu\) in the large cells at some distance from the apex.

In living and in unstained fixed material the disks are refractive colorless bodies. They stain heavily with
nuclear dyes, particularly with Heidenhain's haematoxylin. Cytoplasmic stains, such as eosin, color them much less intensely. They are soluble in Javelle water, as was pointed out by Kienitz-GERLOFF ('02). This fact, coupled with the fact that the disks are continuous on both sides with unaltered cytoplasm, gives support to the view, first expressed by SCHMITZ ('83) that they are protoplasmic in nature.

The results obtained by various workers on intercellular connections in the red algae are conflicting. ARCHER ('80) described in Ballia pits which are at first open and later become closed by a plug, or "stopper". SCHMITZ ('83) came to the conclusion that the pit is closed by a delicate membrane, which is pierced by many or several protoplasmic strands. HICK ('84, a,b) thought he had demonstrated a simple protoplasmic strand passing through the open pit. MOORE ('85) found that a pit-closing membrane is pierced by one or several protoplasmic strands. WILLE ('86) described and figured a sort of sieve tube in Cystoclstonium. HARVEY-GIBSON ('91) found that in Polysiphonia fastigiata an actual protoplasmic connection is present only in young stages and that later a plug closes the pore-canal. However, he mentions that from the edges of the plug fibrillar thickenings connect the neighboring proto-
plasts. KOHL in 1902 regarded the matter of protoplasmic continuity in the Florideae as still unsettled. KIENITZ-GERLOFF in the same year found that the pit is closed by a delicate membrane, and reached the conclusion that an unbroken connection cannot be said with certainty to exist in the form studied (Polysiphonia).

The number of nuclei in a single vegetative cell is always large. Since the nuclei are approximately equidistant in each cell below the apex, it is evident that the number in a cell varies directly with the size of the cell. Estimates made from several preparations show that the large cells near the base of the plant contain, on an average, 3,000-4,000 nuclei. As the cells become smaller toward the apex of the filament, the number of nuclei becomes correspondingly less. A subterminal cell of average size contains about 100 nuclei; an exceptionally large subterminal cell may contain as many as 500 nuclei. In the newly formed terminal cell the number is much less, varying from 12 or 15 to 50, or even 75. The terminal cells, however, like the other vegetative cells, are always multinucleate.

The occurrence of multinucleate cells is rather general in the older portions of the thallus of other Florideae,
while the terminal cell is usually uninucleate (DAVIS, '38; OLTMANNS, '05, p. 89). SCHÜTZ, who first called attention to this fact ('79a), showed also that even in the different species of a single genus the number of nuclei in the cells varies greatly. For example, in the genus Callithamnion, all the cells in the thallus of C. plumula are uninucleate; in C. corymbosum the older cells are multinucleate; in C. Borreri even the youngest cells have two or more nuclei. Obviously, then, the number of nuclei in the cell is no index of relationship in the red algae.

The nuclei of Griffithsia Bornetiana are pretty uniformly distributed through the cytoplasm. While the distance separating them varies somewhat with the age and condition of the cell, usually it is 25-30 μ. Not infrequently several nuclei, with the cytoplasm immediately surrounding them, form small clumps which project into the central vacuole (fig. 9). In the cytoplasmic pad on the cross wall 10-15 nuclei usually form a ring around the intercellular pore (fig. 10).

The size of the nuclei varies considerably with the age of the cells, as has been shown by BERTHOLD to be the case in the coenocytes of Codium (81). In the young cells the resting nucleus is, on an average, about 4 μ in diameter.
just before nuclear division and less than half that just after mitosis. In the older cells the average diameter of the nucleus is $2-3\mu$. In the young sporelings the nuclei are very small, measuring $1-2\mu$ in diameter.

The resting nucleus is nearly spherical or somewhat flattened against the cell wall. It shows a large, densely staining chromatin-nucleolus in the center. The size of the nucleolus varies from $1/5$ to $2/3$ the diameter of the nucleus. It is smallest at the time of complete rest of the nucleus, and grows larger as the time for mitosis draws near. Around the periphery of the nucleus a faint linin network is visible. This is connected with the nucleolus by faint radiating strands (fig. 11). Immediately enveloping each nucleus is a zone of cytoplasm, which appears denser than the cytoplasm elsewhere, and which is probably to be considered of kinoplasmic nature. The thickness of this zone is quite variable. It often becomes about one-third the diameter of the nucleus.

Nuclear division occurs regularly by mitosis, being found most frequently in the terminal cell. It occurs also commonly in the subterminal cell, less commonly in the third cell from the apex, and rather infrequently in cells older than this.
The divisions of the nuclei of a single cell near the apex are almost, though not quite simultaneous (fig. 12). In general, the nuclei near the apex of the cell are at a slightly more advanced stage of division than those near the base. For instance, the nuclei near the apex may show stages of anaphase, or even of telophase, while those in the middle region of the cell are at metaphase, when the nuclei near the base have reached only the condition of prophase (fig. 13). When there is an accumulation of protoplasm in the apex of the terminal cell preparatory to cell division, the nuclei in this protoplasmic mass may divide considerably before the nuclei of the lower part of the cell. In the older cells the nuclei do not show the same simultaneity of division. Here small groups of nuclei may undergo mitosis while the majority of nuclei are in the resting condition. In the younger cells, however, when one nucleus divides, all divide, though not exactly synchronously.

In this connection, it is interesting to note the behavior of the nuclei in the multinucleate cells of other plants. In the sexual organs of various Phycomycetes, the numerous nuclei divide at the same time, as in the oögonium of Saprolegnia (DAVIS, 'C3), in the oögonia and antheridia.
of Pythium (MIYAKE, '01), Albugo (STEVENS, '99, '00), and Peronospora (WAGNER, '89). Simultaneous nuclear division is reported also in the plasmodia of Fuligo (HARPER, '00), in Plasmodiophora (NAWASCHIN, '99), in the "ascus" of Hemiasci (JUEL, '02, POPTA, '99), in the ascus of Ascomycetes (HARPER, '97), in the basidium of Basidiomycetes (HAIRED, '02), and in the binucleate cells of Uredineae (SAPPIN-TROUFFY, '96). Among algae, approximately simultaneous nuclear division is known in the germinating zygotes of desmids (KLEBAHN, '91) in the young colonies of Volvox (OVERTON, '89), in Sphaeroplea (KLEBAHN, '99), in Hydrodictyon (TIMBERLAKE, '02) in the antheridia of Fucus (GUIGNARD, '89). In the vegetative cells of Cladophora, STRASBURGER found that nuclear division is not simultaneous though he reports that several stages of mitosis are to be found in a cell at the same time. This seems to indicate that the stimulus to division affects more than one nucleus at a time. Among the Archeogoniates, simultaneous nuclear division is figured by Miss Lyon for Gelatinella ('01), and seems to be the rule in the developing endosperm and in the early divisions in the fertilized egg of Gymnosperms (COULTER and CHAPELAIN, '01, pp. 20, 31, 41, 83, 96); in the free cell formation of the endosperm of many Angio-
sperms (COULTER and CHAMBERLAIN, '03, pp. 165-6, 172), and in the developing embryo sac (ibid., p. 87). In certain Leguminosae, GUIGNARD ('81) reports simultaneous nuclear division in the cells of the suspensor. The second mitosis in the gonotokonts of Archeogoniates is simultaneous in the two nuclei.

SCHMITZ, in his studies on the nuclei of Siphonocladiaceae ('79, b,c) does not discuss the question of simultaneity of nuclear division, but leaves the reader to infer that the mitoses in a cell do not occur at the same time. The same is true of BERTHOLD'S work on Codium ('81), and of FAIRCHILD'S account of Valonia (94).

Approximate simultaneity of nuclear division may be said to be a very general phenomenon in multinucleate plant cells.

The small size of the nuclei renders Griffithsia a rather unfavorable object for the study of the details of mitosis. The following account is based on observation of the nuclei in vegetative cells of the tetrasporic plants.

The nuclei are throughout their history very poor in linin. The chromatin of the resting nucleus is not, therefore, distributed on a linin reticulum, but is contained in a centrally placed, homogeneous nucleolus, or karyosome.
(fig. 11). It seems possible that a small amount of chromatin is distributed on the peripheral linin network, but the bulk of it is certainly in the nucleolus. As the nucleus prepares for mitosis, it increases somewhat in size, becoming about 4.5 μ in diameter; the nucleolus also enlarges.

Chromatin from the nucleolus, in the form of rather large granules, passes out to the periphery of the nucleus along faint linin strands (figs. 14, 15), very much as was described by Wolfe in Nemalion ('04). At the same time, the nucleolus becomes differentiated into faintly and darkly staining areas, the latter probably representing chromatin. The chromatin continues to pass out of the nucleolus until the whole chromatin content is distributed through the nuclear cavity in the form of granules, some of which are connected with each other by linin threads (figs. 16, 17, 18, 19, 20). The number of these granules seems in every case examined to be more than twice the number of chromosomes and in some instances the granules become much more numerous (fig. 17). The granules now approach the centre of the nucleus, at the same time becoming fewer in number, probably by the fusion of separate granules, (fig. 21). As they move toward the centre, they become arranged roughly in a flat plate, though all the granules do not lie in exactly one plane (fig. 21). While this is going on, a
faint spindle is formed, apparently by the rearrangement of the linin threads (figs. 21, 22). The spindle fibres are connected with small, darkly staining kinoplasmic caps, which lie on the nuclear membrane at opposite poles of the nucleus (fig. 22).

At metaphase the spindle is seen to be short and broad and more or less truncated at the ends (fig. 22). The nucleus is flattened at right angles to the axis of the spindle, so that it is much broader than long. The chromosomes are closely packed on the equatorial plate, which is nearly as broad as the nuclear cavity. The nuclear membrane is intact, so that the whole spindle is intranuclear.

In addition to being closely packed, the chromosomes do not lie in exactly the same plane, and it has been difficult to count them with certainty. Between the chromosomes lie a darkly staining substance that renders counting still more uncertain. Numerous estimates made from polar views of the equatorial plates, vary from 11 to 14. The normal number of chromosomes in the nucleus of the vegetative cell of the tetrasporic plant seems pretty certainly to be 14 (fig. 23).

The nuclear cavity is largest at time of prophase, measuring as much as 5.5 μ in diameter. At metaphase it
is considerably smaller, averaging 5.5 μ broad by 3 μ long. A similar decrease in the content of the nuclear cavity has been noted by YAMANOUCHI in Polysiphonia ('06b).

At metaphase the group of chromosomes splits into two, which withdraw toward the opposite poles of the spindle (figs. 24-28). In anaphase the daughter chromosomes of each group are seen to be arranged somewhat in the shape of a watch crystal, with the concave surface toward the pole of the spindle (fig. 26), as was figured in certain nuclear divisions in Nemalion by WOLFE ('04). The two groups of chromosomes are connected by a few spindle fibres (fig. 26).

As the daughter groups of chromosomes approach the kinoplasmic caps, the outlines of the individual chromosomes become lost in a dense mass of chromatin, which is to give rise to the nucleolus of the daughter nucleus (fig. 27). At telophase the mass of chromatin is in immediate proximity with the kinoplasmic cap. In the meantime the nuclear membrane, which becomes fainter during the course of mitosis, disappears, the original nuclear cavity becoming filled with cytoplasm, only a few faint striae remaining of the spindle (fig. 28). The mass of chromatin resulting from each group of daughter chromosomes becomes surrounded by a clear area, which is bounded by a faint nu-
clear membrane (fig. 29). The kinoplasmic cap grows around the daughter nucleus, whose organization is now complete.

The axes of the mitotic figures seems to bear no relation to the axis of the cell not to the position of the cell wall (fig. 21). When the axis of the spindle is at right angles to the cell wall, however, the daughter nuclei shift their position at telophase so that a line connecting them is parallel to the cell wall.

In the vegetative cells of the sexual individuals the behavior of the nuclei in mitosis is in general similar to that in tetrasporic individuals. The number of chromatin granules which pass out from the nucleolus and become distributed through the nuclear cavity, while variable, is always much less than in the nuclei of the tetrasporic plant (figs. 30, 31). The size of the nucleus at prophase is about the same in the two cases. At the time of metaphase, however, the cavity of the nucleus of the sexual plant is somewhat smaller than that of the tetrasporic plant. The number of chromosomes on the equatorial plate in the sexual plant is 7, though here, too, the counting is made difficult by the presence of a darkly staining substance between the chromosomes (figs. 32, 33).

Mitoses of the type described above have been observed
in vegetative cells of various ages, in the hair-cells of
the procarp and cystocarp, in the primary tetrasporic cells,
in the stalk cells of the tetrasporangia, in the involucral
cells of the tetraspore-sorus, in the sporelings from tet-
raspores, and in the sporelings from carpospores.

No undoubted cases of amitosis have been observed. An
appearance suggesting amitosis has been noted in the stalk
cells of the tetrasporangium and in the cells of the spor-
ogenous lobes, and may possibly occur in the vegetative
cells; but the small size of the nuclei renders exact ob-
servation on this point very difficult. It may be said
with confidence, however, that the usual mode of nuclear di-
vision is by mitosis.

It may be well to compare at this point the behavior
of the nuclei in division with those of Polysiphonia (YAMA-
NOUCHI) and Nemalion (WOLFE), the two other red algae which
have been carefully studied from the cytological stand-
point.
The chromatophores are numerous, small, oval or round, flattened bodies of rosy pink color lying in the granular cytoplasm next the cell wall. They vary considerably in size; on an average, each is about 3.5 \(\mu \) long, 2.5 \(\mu \) broad and 1.2 \(\mu \) thick. Usually the outline of the chromatophore is smooth (fig. 11), but occasionally it is toothed, as is true in other species of Griffithsia (BERTHOLD, '86). In the younger cells the chromatophores are crowded together without definite arrangement. In the older cells they often occur in curved rows, which are arranged in the form of an irregular network (fig. 34), as was described for other species of Griffithsia by BERTHOLD ('86), and for many genera of the Siphonocladiaceae by SCHMITZ ('79).

In material preserved in formalin, the distribution of the coloring matter in the chromatophore is similar to that described by PRIESTLEY and IRVING ('07) in the chromatophores of Selaginella and Chlorophyllum. The central portion of the chromatophore is colorless; the coloring matter occurs in a peripheral layer. When transferred from a 5\% solution of formalin in sea water to distilled water, some of the chromatophores were seen to have split into two halves (fig. 35), as was shown by MANGELI to occur when certain chloroplasts were subjected to solutions of less
osmotic strength (see PRIESTLEY and IRVING, '07, p.).

The number of chromatophores in a cell is very large. In an older cell of average size, about 400,000 were estimated to be present.

The chromatophores in the protoplasmic pads lying on the cross walls are much fewer and smaller than in other portions of the cytoplasm.

Chromatophores apparently are absent from some lateral cells when first cut off; nor have they been seen in the young procarps, in the hair cells, in the stalk cells of the tetrasporangia, or in the young tetrasporangia. While no leucoplasts have been demonstrated in these cells, it is possible that they are present.

In dividing, the chromatophores simply pull apart. They first elongate and the pigment collects in each end; then they assume approximately a dumb-bell shape; and finally either separate completely, or more usually remain connected by a fine strand, as though the division were not quite complete (fig. 36).

Starch is normally present in the vegetative cells, as has been found to be true of Florideae generally by BUTSCHLI ('03), BRUNS ('94), KOLKWITZ ('99), and others. It occurs as very small granules in circular groups or as larger granules lying in the cytoplasm between the
chronatophores. Each starch grain is rounded or oval, usually with a dark center; no signs of lamination have been observed (fig.). Starch is especially abundant in sporelings, and in the cells of the attaching organ (fig.).

Besides the starch grains, there are normally present in the cytoplasm rounded masses of various sizes of what seems to be proteid material. These spheres usually occur in small groups, each group being surrounded by a clear area. The groups seem to be especially abundant in the cells at the time of nuclear division, and often simulate nuclei (fig.). Spheres of what seems to be the same material are usually present in the pads of protoplasm lying on the cross walls, and small bits have been observed lying in the cytoplasmic strands connecting neighboring cells (fig. 6).

Cell division in Griffithsia is remarkable for the disparity in the size of the daughter cells. It was first described by WRIGHT ('79), whose account was supplemented by the observations of BERTHOLD ('86).

In the vegetative cells, division occurs (1) by the cutting off of daughter cells from the terminal cell of the filament, (2) by the cutting off of small dome-shaped seg-
ments from the upper borders of cells below the apex. The first type of division simply increases the length of the filament, the second results in the formation of a new branch.

There appear to be two methods of cell division. The first occurs most commonly in the larger cells, and is always preceded by an accumulation of cytoplasm, nuclei, and to a less extent of chromatophores, which forms a dense, more or less homogeneous mass in the terminal portion of the apical cell (fig. 37). A thin dome-shaped membrane is now laid down, with its convexity toward the apex, cutting a solid accumulation of protoplasm from the tip of the cell (fig. 38). This membrane is formed simultaneously over its whole extent. There is no trace of cleavage in connection with its formation, the protoplasm being in contact with it on each side. The nuclei appear to have nothing to do with its formation, nor is its formation visibly associated in any way with nuclear division. The membrane is, however, never formed until there is an accumulation of nuclei and cytoplasm in the tip of the cell. The young cell, at first a solid cap over the tip of the apical cell, grows rapidly, soon acquiring a central vacuole (fig. 39), and forming a typical vegetative cell. During the growth of
the young cell, the cross partition loses its convex appearance and becomes flattened. It becomes overlaid on each side by a cellulose wall, which does not cover the membrane completely. There is left in the center a circular area or pit, which is noticeable because of the early development of the cytoplasmic plugs described on page 9 (fig. 40).

This is a very unusual method of cell division in coenocytes (DAVIS, '04, p. 452-3). So far as I know, it has been described in detail in no other form, though a somewhat similar process appears to take place in the large vesicles of Valonia (SCHMITZ, '79).

The details of the division which gives rise to a lateral branch are very similar to those of the division of the apical cell. The daughter segments of the subterminal cells are formed on the side of the upper border of the cell, usually four or five cells from the apex. There is first a solid accumulation of protoplasm (fig. 41), then the adjoining cell wall bulges outward, and a dome-shaped membrane cuts the outer part of the protoplasmic mass from the inner, precisely as in the division of the apical cell. The young segment pushes out and becomes cylindrical, a vacuole early appearing in its middle, and forms the apical cell of a new branch (fig. 42). The branch thus initiated
grows for a time more rapidly than the main filament, until it about equals it in size. Thus an apparent, or false, dichotomy results. True dichotomy appears never to occur, as in no case has a branch been found to divide longitudinally. Frequently more than one branch is laid down at a node so that trichotomy results, and in the larger cells near the base of the plant, four branches have been observed to proceed from the summit of the same cell.

A second method of cell division occurs commonly in the apical cells of the smaller branches, and sometimes in the division of the larger cells below the apex. A ring of cellulose projects inward from the cell wall a short distance from the apex, very much as was described for Cladophora by Strasburger ("88), (figs. 43, 44). The ring grows inward, but not so as to cut off the new cell completely. An open circular pore is left in the center, across which the protoplasmic plugs are soon formed in the usual way. No pit-closing membrane is formed between cells separated in this manner.

The second method of division, which is the usual one in coenocytes, differs from the first in that the daughter cell is from the beginning much more nearly equal in size to the cell from which it is cut than is the case in the
first method of division.

Wherever the second method of cell division occurs, the partition is in one plane, never arched. In all the cases examined in which division occurred by the ingrowth of a cellulose ring, the partition cut into the central vacuole, so as to cut off a segment containing part of the vacuole of the mother cell; in the first method of division however, the segment cut off is at first solid. The relation of the cleavage plane to the vacuole seems to determine the method of cell division; in the division of the vegetative cells, where the cleavage plane occurs so as to cut into the solid protoplasmic accumulation in the apex of the cell, division takes place by the first method. Where the plane of division is sufficiently removed from the apex to allow the partition to cut into the central vacuole, division is by the second method.

As mentioned above the nuclei appear to take no part in cell division. This seems to be the rule in coenocytic cells (St '38), though Ville has noted an apparent exception in Acrosiphonis ('00).

The number of nuclei in the smaller daughter cell just after its formation is various. The average number is between 12 and 20, but in some cases, and always following
the second method of cell division, the number is considerably greater. The cell next below the apex may show 30-250 nuclei.

Branched hairs are frequently borne on the upper borders of the younger cells. There are usually 6 or 7 of these around each node on which they occur.

Their mode of origin is very similar to that of the tetrasporic filaments to be described later. Small papillae arise nearly simultaneously around the upper border of a cell near the cross partition (fig.), each papilla containing a single nucleus and dense, homogeneous cytoplasm. The papillae are cut off from the protoplast by an arched membrane (fig.), similar to that formed in the division of some of the vegetative cells. The nucleus now divided (fig.), and one of the daughter nuclei wanders into a bud from the papilla, the bud, with its nucleus, now becoming cut off (fig.). A second, a third, and sometimes a fourth bud are formed and cut off like the first (fig.). Each of these daughter cells behaves in the same way, cutting off three or more buds, and in this way a thrice compound hair is formed (fig. 47). Each of the terminal cells divides into two. The basal cell of a hair becomes multinucleate, as do the cells of the first order of branching;
the cells of the second order of branching remain uninucleate. The basal cell is connected with the cell on which it is borne by an intercellular connection of the same type as that which occurs between neighboring vegetative cells.

After they are fully formed, the hairs elongate greatly and become hyaline. Each cell takes part in the elongation. A vacuole is formed in the cytoplasm which increases in size as the cells elongate. A very thin layer of cytoplasm lies between this vacuole and the cell wall; in the outer ends of the long cells are seen accumulations of cytoplasm, in which most of the nuclei lie.

The fully formed hairs may remain a considerable time before elongating. Elongation occurs in all the hairs of a single node at the same time, and seems to take place rather suddenly. The total length of a hair of average size before elongation is about 40 \(\mu \) , and after elongation about 350 \(\mu \). Such great increase in size in a short time seems to be rendered possible by the fact that the cells of a hair do not secrete a cellulose wall until after elongation has taken place.

After elongating, the hairs remain for a while on the plant, but finally the connection between the basal cells and the vegetative cell breaks, and the hairs fall off as a whole. Not infrequently a second crop of hairs is form-
ed before the first crop falls off, so that there appear to be "two sets of hair-like organs" (FARLOW, '79, p. 132).

By the time the second set is formed, the first set is carried by the growth of the vegetative cell to some distance from the cross partition between the vegetative cells, and the second set of hairs is always formed between the cross partition and the first set (figs. 45, 46).

Individuals vary greatly in the number of hairs produced. In some specimens, hairs are found on almost every node in the younger portion of the plant. Again, one may look over a great many shoots before encountering a single set of hairs. What external conditions are favorable to the production of hairs in Griffithsia is not known.

In the material examined by MISS SMITH ('96), hairs occurred on the female plant only on nodes bearing cystocarps. Such a restricted distribution is not general. Any of the young vegetative cells seem to be capable of producing hairs, and while hairs occur usually in the vicinity of reproductive organs, there seems to be no necessary connection between the two.

The function of the hairs is quite unknown. They undoubtedly increase the surface exposed to the water, and inasmuch as they occur especially abundantly in
the neighborhood of the reproductive organs, where the processes of metabolism may be assumed to be most active, and are usually absent on the sterile portions of the plant, it seems likely that they perform the functions of absorption and respiration, as is believed by ROSENVINGE ('03) to be the functions of similar organs in the Rhodomelaceae.

Rhizoids are frequently formed from the older vegetative cells. Protoplasm accumulates at a spot on the lower half, or near the middle, or even at times on the upper half of the cell (fig.), and pushes out as a hollow tube with a plug of protoplasm at its tip (fig. 48). In the cytoplasm of a rhizoid the chromatophores are rather few in number, and the nuclei are smaller than usual in vegetative cells. The average diameter of a rhizoid is about 80 μ; the length 2 mm or more. The rhizoid secretes a rather thick cellulose wall. The longer rhizoids become divided into two or three long cylindrical cells by the centripetal growth of a cellulose ring such as occurs in the division of certain vegetative cells.

The rhizoids so formed attach themselves to any neighboring object, curving around it in the manner of a tendril (fig. 49). In this way the plant is more securely anchored than it would be by a holdfast alone. Further, rhizoids
frequently become entangled among neighboring filaments of the same plant, thus binding the lower parts of the filaments more closely together and rendering them less easily torn apart (fig. 50). This is especially true of the antheridial plants, in which the rhizoids are very richly developed.

After the rhizoids become attached, new shoots may arise from them in the same way that lateral branches arise from the vegetative cells (fig.).

Tendrils have been known in the red algae since AGARDH ('80) first described them in *Hypnea, Mychodea, Rhabdonia*, and other genera. SETCHELL ('96) described tendrils in *Laurencia* and *Cystoclonium*, and stated that they may also serve for vegetative propagation. NORDHAUSEN ('00) described tendrils in *Hypnea, Spyridia*, and *Nitophyllum* and showed that new plants may arise from root tendrils in *Hypnea*.

A process of regeneration occurs in the filament, when, as is often the case, one of the old cells perishes. Continuity of the filament is re-established in the following way. An outgrowth from the cell next above pushes through the intercellular pore, and grows down into the cavity of the dead cell. The outgrowth is a tube, similar in appear-
ance and mode of formation to a rhizoid. The cavity of
the outgrowth is perfectly continuous with the cavity of
the cell from which it originates (fig. 51). A similar
tube grows up more slowly from the cell below and the two
meet near the centre of the old cell cavity (fig. 52).
They fuse at their tips (fig. 53) to form a continuous hol-
low cylinder; the cylinder increases in size and comes to
replace the dead cell exactly. The usual intercellular con
nection is formed at the junction of the new cell with each
of the two old cells which contributed to its formation.
A similar process of regeneration was described for Griffithsia Corallina by Janczewski ('76), with this difference
however, that in G. Corallina only the cell above the dead
cell plays a part in the formation of the new cell. Tobler
('03) has shown that a similar process takes place in oth-
er species of Griffithsia and in Bornetia.

This process leads at times to the production of a cell
of very peculiar appearance. When the cell next below two
branches perishes, the lowest member of each branch puts
out a tube (fig. 51) which meets the tube from the cell be-
low. The three fuse at the point of contact and a Y-shaped
cell results, which is a product of the fusion of three dis-
tinct cells (fig. 54).
Griffithsia may be anchored to the substratum either by a special attaching disk, or more usually by a tangled mass of rhizoids. An attaching disk has been noted in plants growing on Zostera and smooth rocks, but when, as is often the case, Griffithsia is attached to other algae of cylindrical habit, the disk is replaced by a tangled mass of rhizoids, which are short, thick-walled, and filled with starch. Inspection of a number of specimens shows all stages of transition from a mass of rhizoids to a well developed attaching disk. The disk may be said to be formed of rhizoids in contact laterally. The development of the attaching organ is described on page 88.

The attaching disk when present is formed of a single layer of heavy-walled cells, bright pink in color owing to the presence of numerous chromatophores, densely filled with protoplasm, and packed with large starch grains (figs. 55, 56). From it new shoots may arise.

Judging from analogy with other forms (see Oltermans, '04, p. 648, and '05, p. 212) we may assume that the plant winters over by means of the attaching disks or the mass of rhizoids at its base. In the spring these give rise to the plants which reach perfection in the summer. The evidence for this is rather negative. 1. The first plants
found in 1907 possessed the attaching disk already well developed, whereas we know that in the sporelings the basal disk is developed quite slowly. 2. From the time Griffithsia was first found in July development was extremely rapid, and this seems to point to the conclusion that the plants drew on some store of food.

SEXUAL REPRODUCTION.

The antheridia are distributed as caps over the upper ends of the somewhat globose terminal cells of the male plants (fig. 1). They are formed as the terminal cells of short, much branched antheridial filaments. On a cell of average size there were found to be about 500 of these filaments, each of which produce about 50-75 antheridia, a total of 25000-37500 antheridia for each fertile cell of the male plant. The number of antheridia on a single antheridial filament, as well as the number of filaments produced on a single cell, varies greatly.

The mode of origin of the antheridial filaments is as follows: while the terminal cell of the male plant is still small and not much swollen, (measuring on an average 0.2mm. long and 0.15 mm broad at this stage) about 100-200 protuberances arise simultaneously on its apical surface
Each protuberance is at first hemispherical and about 20-25 µ in diameter. There is in each a single nucleus, surrounded by dense, clear cytoplasm, which is in free communication with that of the mother cell (fig. 58). Their formation is not connected with nuclear division, but takes place while the nuclei are in the resting condition. The withdrawal of so many nuclei from the upper portion of the parent cell leaves this region almost free of nuclei (fig. 57). As growth proceeds, however, nuclei wander up from the basal region, and become again evenly distributed in the cytoplasm.

Each primary protuberance is soon cut off from the mother cell by a delicate partition, which is laid down by the protoplasm in the same way as in the first method of cell division described on pages 25-26 (fig. 59). When its formation is complete, the primary protuberance divides several times vertically (figs. 61, 60). A lateral cytoplasmic process is formed, then the nucleus divides by mitosis (figs. 61, 60). One daughter nucleus remains in the body of the primary protuberance, the other passes into the cytoplasmic process. The two protoplasts now become separated by a constriction of the hautschicht, whose ingrowth appears to be aided by the formation of a vacuole
at the point of constriction (figs. 60, 61). This process of division continues until there are about 200-500 secondary protuberances on the apical portion of the terminal cell.

The protuberances appear not to develop cellulose cell walls of their own, but lie in the swollen wall of the mother cell (fig. 62).

Each of these secondary protuberances gives rise to a branched antheridial filament. The single nucleus in each divides by mitosis, and a partition is formed separating the two nuclei, and cutting the protuberance into an upper and a lower cell (fig. 63). The lower or basal cell buds off other cells above, each uninucleate, to the number of five or six (fig. 64). These, along with the upper of the two cells first formed, in turn bud off groups of uninucleate cells, which become the spermatia directly (fig. 66). Thus the antheridial filament is a twice compound structure like a small bush, the terminal twigs of which become the spermatia.

The basal cell of the antheridial filament is somewhat cubical in shape, and may contain ultimately several nuclei. The cells of the first and second order of branching are uninucleate and are remarkable for their shape,
each resembling a pear with a very long stem (fig. 65). These cells early become filled with a large vacuole, the cytoplasm forming a very thin film next the hautschicht, and the nucleus lying in the apical portion. None of the cells of the antheridial filament appear to form a cellulose wall. The whole filament is covered by the swollen wall of the mother cell (fig. 63). When the spermatia are mature, they simply break loose from the cells on which they are borne, and float freely out into the water. (fig. 66). As they become free, the long neck which attached them to the cell next below becomes drawn into the body of the spermatium, which assumes an oval shape.

The mature spermatium is about 3 μ long and 2 μ in diameter. Its bulk is occupied by a large vacuole, which is bounded by a thin film of cytoplasm. The single nucleus lies in the end which pointed away from the antheridial filament. No chromatophores have been discovered in any of the antheridial cells. The living spermatium is quite clear and somewhat refractive.

It seems of interest to note the fact that the living spermatia appear not to be extruded unless a slight pressure is exerted on the cells of the thallus. If branches of an antheridial plant are transferred carefully from sea-
water to a slide and left undisturbed, few antheridia become extruded. However, the pressure of a cover glass or even a mere touch with a needle causes the extrusion of hundreds of antheridia from each large antheridial cap. This, coupled with the fact that the tufts of Griffithsia are feeding grounds for several species of minute crustacea especially of a species of Caprella, seems to lend probability to the suggestion that the antheridia of the red algae are sometimes translocated through the agency of animals.

No evidence was secured as to whether the antheridial filaments produce successive crops of spermatia. It is certain, however, that after a time the antheridial cap ceases to produce spermatia, and the antheridial filaments become disorganized and break away, leaving the globose terminal cell of the thallus free of any antheridial cells. When this occurs, it is usual for two or more side branches to arise from the subterminal cell and to begin to produce antheridia when 3 or 4 cells long (fig. 67).

The globose terminal cell which has produced one crop of spermatia frequently produces one or more new branches from its summit, so that this cell becomes again a functional apical cell (figs. 68).

The procarps occur laterally on the nodes near the
tips of the filaments of the female plants (fig. 3). They are produced successively, so that on a fertile branch a procarp is formed on nearly every node. Their origin and development has been described in detail by Miss SMITH ('96), whose account supplements that of FARLOW ('79), and SPALDING ('90).

The procarps are formed from the small terminal vegetative cells. When a procarp is to be initiated, the terminal cell, instead of dividing in the way usual in terminal vegetative cells, becomes pushed to one side by a lateral branch of the subterminal cell (fig. 69), which becomes the main axis of the filament. The terminal cell which is to give rise to the procarp contains several nuclei; it divides into two cells in such a way that one cell lies partly over the other. The plane of division is oblique, the inner edge of the partition being somewhat lower than the outer (fig. 70). The lower of the two cells so formed is the basal cell of the procarp. The upper cell divides again by a transverse wall to form the central cell of the procarp and the first peripheral cell (fig. 71). The first peripheral cell is cut off from the central cell on the axial side. A second and third peripheral cell become cut off from the upper border of the central cell, with no discernible regularity of position (figs. 72,73).
The fourth peripheral cell mentioned by FARLOW has not been only seen, and must occur occasionally. Of the peripheral cells only one has any further part in the production of carpospores. Often, though not always, the peripheral cells cut off terminally a small sterile cell (fig. 74).

Up to this point the number of nuclei in each of the cells of the procarp varies from 4 or 5 to 10 or 12 or more; there appear to be always more than one. As the procarp develops, the number of nuclei increases by mitosis, until in the cells of the mature procarp the nuclei become quite numerous. The average numbers are about as follows: basal cell, 50, central cell, 45, peripheral cells, 3-30, each sterile cell, 4.

The cytoplasm in the cells of the young procarp is homogeneous and rather dense. A vacuole of considerable size occupies the center of the basal cell, and of the central cell. No chromatophores or leucoplasts have been seen in the cells of the procarp, though chromatophores are developed in the cells of the cystocarp.

It sometimes happens that after the first three cells of the procarp are formed the procarpic branch becomes metamorphosed into a vegetative shoot of the usual type, but distinguishable from other vegetative shoots by the fact
that the cell at its base remains broad and flat, retaining the appearance of a basal cell of a procarp (fig. 75). In such cases the first peripheral cell, which is really a terminal cell, functions as an apical cell of a vegetative branch.

From the second or third peripheral cell the carpogenic branch is formed laterally. The peripheral cell from which the carpogenic branch is produced is the "supporting cell" of Miss SMITH, and is equivalent to the "auxiliary cell" of HASSENCAMP ("02). In this account I shall adopt the term auxiliary cell. From it a small uninucleate cell is produced laterally, which is the basal cell of the carpogenic branch. This cuts off a terminal cell, which in turn divides (fig. 74). The upper of the three cells so formed divides again, thus forming a carpogenic branch of four cells (fig. 76). The carpogenic branch is bent at right angles in such a way that the terminal cell, from which the carposgonium and trichogyne are formed, is usually in contact with the auxiliary cell. Each cell of the carpogenic branch is at first uninucleate. From the free border of the terminal cell the trichogyne is produced as a club-shaped projection (fig. 76 a). Whether a division of the nucleus of the carposgonium accompanies the formation
of the trichogyne, as has been found to be the case in
Batrachospernum (DAVIS, '96), Nemalion (WÖLFE, '04), and
Polysiphonia (YAMANOUCHI, '06b), has not been determined.
The trichogyne reaches a length of 35-40 μ,
and becomes quite slender, with a diameter of about 1 μ.
In the mature trichogyne several granules, which stain like
chromatin, are to be observed (fig. 83).

The mature trichogyne is straight or somewhat curved
and sometimes, though not always, slightly swollen at the
free end.

Before and during the formation of the carpogenic
branch, noteworthy changes take place in the auxiliary cell.
The cytoplasm becomes denser and the nucleus nearest the
centre of the cell increases very greatly in size. Before
the differentiation of the auxiliary cell, the nuclei may
average 1.5 μ in diameter. When the carpogenic branch is
fully formed, the central nucleus of the auxiliary cell may
reach a diameter of 6.5 μ. A similar change may take
place in one of the nuclei of the other peripheral cells.

The structure of the mature procarp is as follows:
(figs. 79, 80). The broad, flat basal cell bears on its
upper border the central cell, which is also broad and ra-
ther flat. The central cell bears usually three peripheral
cells, which may or may not cut off sterile cells at their tips. One of the peripheral cells bears laterally the carpogenic branch, which consists of a basal cell, two intermediate cells, and the carpogonium with its trichogyne. The intermediate cells and the carpogonium are disposed in a straight line, which lies at right angles to a line passing through the basal and the auxiliary cells.

All the cells of the procarp are multinucleate except those of the carpogenic branch. Of these the terminal cell is at an early stage of development binucleate, one of the nuclei passing into the trichogyne and later disintegrating, the other remaining to form the nucleus of the carpogonium. The two intermediate cells are uninucleate, and the basal cell of the carpogenic branch is usually binucleate. The connections between the cells of the procarp appear to be similar in general to the connections between neighboring vegetative cells.

Mention has been made above of the hairs which usually occur in the vicinity of procarps.

The small size of the trichogyne and of the carpogonium renders *Griffithsia Bornetiana* a rather unfavorable object for the study of the details of fertilization, but it has been possible to make out the essential facts. A spermatium becomes attached to the trichogyne near its tip (figs.
81,83). The spermatium is either applied directly to the surface of the trichogyne (fig. 82), or there may be a short tube connecting the two (fig. 80). Whether the nucleus of the spermatium divides at this stage, as is the case in Nemalion (WOLFE, '04) was not determined though such an appearance as is presented in fig. 84 suggests that division may occur. A sufficient number of stages was not obtained to enable me to speak with certainty on the subject, but the stages that were obtained seem to render it highly probable that the nucleus from the spermatium passes down the trichogyne, enters the carpogonium, and there fuses with the nucleus of the carpogonium (figs. 82,85).

Immediately after fertilization the trichogyne becomes much twisted and falls off, leaving a short stump on the carpogonium (fig. 85). Since the fusion nucleus stains very heavily, the details of its structure were not made out. However, because of this very capacity for taking up dyes, it is easily distinguished from the other nuclei of the procarp.

Very soon after fertilization, the carpogenic branch begins to be withered, and the fusion nucleus is seen to be present in the auxiliary cell (fig. 87). The actual passage of the fusion nucleus into the auxiliary cell was
not observed. In no case has a fusion nucleus been seen in any of the cells of the carpogenic branch other than the carpogonium, and it seems unlikely that it passes into any of these other cells. The position of the carpogonium in contact with the auxiliary cell renders it possible that the two become connected by resorption of the walls at the point of contact, and that the fusion nucleus passes directly into the auxiliary cell, as was suggested by SCHMITZ for other species of Griffithsia, and demonstrated in Thuretella and Chylocladia by HASSENCAMP ('02). In Polysiphonia violacea the communication between the carpogonium and the auxiliary cell is transient (YAMANOUCHI, '06b), so that it might well be difficult to demonstrate in such a form as Griffithsia.

The cells of the carpogenic branch after fertilization and the passage of the fusion nucleus into the auxiliary cell usually degenerate simultaneously, and often the whole carpogenic branch breaks away from its attachment to the auxiliary cell, and lies free among the cells of the procarp (fig. 33). In one case the lower cells of the carpogenic branch were seen to have withered before the passage of the fusion nucleus into the auxiliary cell, which lends support to the view that the fusion nucleus passes directly into
the auxiliary cell and not through the cells below the carpogonium. Miss SMITH's account ('96, p. 41) of the withering of the carpogenic branch was not corroborated in the present study. She states that the carpogonium first becomes disorganized, "the adjacent cell at the same time apparently increases in size, but it also soon loses its contents, and in some cases appears to become disorganized, while the two lower cells take a deeper stain than before". As stated above, the carpogenic branch usually withers as a whole, and not cell by cell.

At the time of the passage of the fusion nucleus into the auxiliary cell, there is in the center of the latter a very large clear nucleus. This is one of the nuclei originally present in the auxiliary cell. Besides this, two or three small nuclei are frequently seen in the peripheral portion of the cell (fig. 87). These are the remaining nuclei present at the time of the organization of the auxiliary cell. They seem to disappear during the course of the further development of the auxiliary cell.

The fusion nucleus in the auxiliary cell is of very characteristic appearance. It differs from the usual type of nucleus in possessing two chromatin-nucleoli instead of one. It would seem as if the chromatin from the male and
the female parent does not fuse completely, and that the nucleoli of different origin remain distinct for some time after nuclear fusion. The behavior of the chromosomes in the early divisions of the fusion nucleus was not observed, though it would be of considerable interest to know whether two distinct groups of chromosomes are formed at this stage.

The fusion nucleus divides once in the auxiliary cell, and the two nuclei come to lie in the opposite ends of the now somewhat elongated cell (fig. 89). Between them lies the greatly enlarged central nucleus originally present. Each of the nuclei resulting from the division of the fusion nucleus usually shows the characteristic double nucleolus. The auxiliary cell now divides, one daughter cell containing the enlarged central nucleus and a single fusion nucleus, and the other containing only a fusion nucleus (fig. 90). The latter may be called the placental cell; from it the sporogenous lobes usually arise. Figure 92 shows clearly that sporogenous lobes may also be formed from the auxiliary cell after the placental cell has been found; the nuclei entering these lobes are derived from the fusion nucleus. Very similar behavior has been observed by HASENCAEP ('02) in the auxiliary cells of Thuretella
and Chylocladia.

During these changes, the large nucleus of the auxiliary cell continues to increase in size. It becomes almost empty of contents, the nuclear outline becoming less and less distinct, and finally the nucleus disappears in the cytoplasm (fig. 91).

Changes also take place in the other elements of the young cystocarp. The central cell, which at first contains a large central vacuole, becomes filled with homogeneous cytoplasm with numerous nuclei formed by the multiplication of those originally present (fig. 87). From the sides of the basal cell of the procarp soon after fertilization several small cells are cut off successively (fig. 91). These in turn divide, and the outer cell becomes an involucral ray (figs. 87, 91). Three to seven involucral rays are formed; they are of various sizes and ages, and curve up over the cystocarp so as to cover it almost completely, except at the top. The structure of the involucral rays offers nothing especially remarkable. They are distended sacs, pale pink in color owing to the presence of a small number of chromatophores. A thin layer of protoplasm bounds a very large vacuole. The nuclei may become quite numerous, 87 having been counted in a ray of average size.
The rays do not form a definite pericarp, as they are not united at the sides. None are produced between the cystocarp and the vegetative cell which bears it.

The placental cell formed at the division of the auxiliary cell increases in size and in number of nuclei, all of which are the product of the division of the fusion nucleus. Small protuberances are formed on its free border, each of which contains a single nucleus (figs. 91, 92). Each protuberance is cut off from the mother cell by an arched membrane, and the cells so formed give rise by repeated division to the sporogenous cells from which the carpospores are formed.

While this is taking place, there is a general fusion of cells in the center of the cystocarp (figs. 91, 93, 94). The following cells take part in this fusion; the placental cell, the auxiliary cell, the central cell, and sometimes the peripheral cells. The result of the fusion is the production of a very large, irregularly shaped placenta, on the upper surface of which the sporogenous lobes are formed (figs. 94, 95).

The placenta contains nuclei from three sources: (1) the original nuclei of the peripheral and auxiliary cells, which appear to take no part in spore formation, (2) the
numerous nuclei of the central cell, which lie in the base of the placenta, a region from which no sporogenous lobes are formed, and (3) the numerous nuclei resulting from the division of the fusion nucleus. These last lie in the upper region of the placenta, where the sporogenous lobes are being formed, and appear to be the only nuclei to enter these. A similar placenta, with numerous nuclei of diverse origin, has been described in Chylocladia by HASSENCAMP '02.

At least in some cases, the nuclei from the central cell appear to become abnormal and break down. The chromatin forms a crescent-shaped mass applied to the nuclear membrane on one side (fig. 96), the nuclei swell, their outlines become faint, and finally their contents mingle with the cytoplasm. Not all of the nuclei from the central cell degenerate, and it is often difficult to distinguish those which remain normal from the sporogenous nuclei, especially in the older cystocarps, except by their position in the cell.

The mode of division of the sporogenous lobes seems to vary considerably in different lobes. The series of figures from 97 to 101 gives a fair idea of what usually takes place. Following the division of the nucleus of one
of the protuberances mentioned as being formed on the free surface of the placental cell or on the upper part of the placenta, small curved segments are cut off from the outer surfaces of the protuberance in much the same way as a segment is cut off from the apical vegetative cell, with this difference, however, that the cells of the sporogenous lobe are usually uninucleate. In this way a compact tissue is formed, the cells of which round themselves off, each cell producing a carpospore. As the cells round off, the sporogenous lobe becomes converted into branched chains of oval cells. The links of a chain are free at the sides, but connected with each other above and below by a narrow strand of cytoplasm; midway between connected spores occur callus-like plugs similar to those lying in the pits between adjacent vegetative cells. From the time when they first round off, the spores increase greatly in size, until when they are ready to be shed, the spores measure about in diameter, the nuclei measuring . When the spores are ready to be shed, their diameter is about 30-35 μ, their length 40-54 μ, the diameter of the nuclei 8.5-9 μ.

This is the usual history of a sporogenous lobe. In some cases a difference is presented because of the fact that the spore mother cells are rounded off at a very early
age, so that the sporogenous lobe is not a compact tissue when young, but a group of rounded cells (figs. 95,102).

There is some evidence that in this case the method of cell division in the sporogenous lobe is by constriction, somewhat after the manner of the second method of cell division described on page 27. The final result is the same in the two cases, i.e., the production of branched chains of carpospores.

The sporogenous lobes of a single cystocarp are of various ages. Lobes with mature spores may be seen by the side of unicellular sporogenous lobes, and usually all stages of development may be seen in a single cystocarp (fig. 103).

Each sporogenous lobe is covered with a gelatinous envelope, not easily seen until swollen with glycerine or a watery fluid. The individual spores seem to be without a cellulose wall, being enclosed only by the hautschicht.

As a rule, all the spores of a single lobe become mature at the same time. The links of the chains break at the point where the callus-like plugs are developed, the connecting strands are drawn into the body of the spores, and the spores slip out of the gelatinous envelope and float away into the water.
The number of spores produced in a cystocarp can hardly be estimated with certainty, because while the mature spores are being shed, new sporogenous lobes are being inaugurated. From a study of several cystocarps of average size, it was found that about 6 lobes are present at one time, with an average of about 40 spores in each lobe, giving a total of about 240 spores in a normal cystocarp. Undoubtedly the number of spores produced during the life of a cystocarp may often be greater than this.

When set free, the spores present much the same appearance as the tetraspores described on page 73. They are oval in shape. Around the periphery is a zone containing rather dense cytoplasm and numerous flattened chromatophores, which sometimes present their edges, but usually their flat surfaces, to the outside. In the centre is the large nucleus, enveloped in a zone of homogeneous cytoplasm. The nucleolus, which contains the chromatin, is usually in the form of 12-14 rounded bodies in the centre of the nuclear cavity. The linin is scanty in amount, being barely visible around the periphery of the nucleus. Between the nucleus and the peripheral zone of chromatophores, the cytoplasm is very coarsely vacuolar (fig. 104).

In a few cases, spores have been noted which have germ-
ated in situ, and which contain two nuclei (fig. 105).

Nuclear divisions in the cystocarp are of the usual type. In the divisions of the sporogenous nuclei, the number of chromosomes is about 14 (fig. 105a).

Food material appears to be passed into the cystocarp from the vegetative cell on which it is borne. Figure 105b shows a section through the connection between the basal cell of the cystocarp and the adjacent vegetative cell. In the cytoplasmic pad occurs a great abundance of the spheres of food material mentioned on page 24.

ASEXUAL REPRODUCTION (Tetraspores).

The tetraspores are formed in a ring around the upper border of any cell below the apex of the filament (fig. 4). The ring of tetraspores appears to encircle the node, fitting snugly in the constriction between neighboring vegetative cells. On the outside of the tetraspores a circle of involucral rays grows up around the sorus. The number of these is variable; there are often only 6 or 8; sometimes there are as many as 20. They appear rather late in the development of the sorus, in some cases the most advanced
tetraspores having already matured before the involucral rays are formed. The rays are expanded curved plates, connected at the base with the vegetative cell, and free laterally and terminally. Usually neighboring rays are in contact at the sides, so that the circle of tetraspores is well screened from without. Each ray is a single cell similar in appearance and in structure to the outer cell of the involucral ray of the cystocarp. Where the rays are in connection with the vegetative cell, the plugs characteristic of the intercellular connections elsewhere are formed.

The tetraspores are formed as follows: Around the upper border of a young cell below the apex, protoplasm accumulates in small rounded masses, each containing a single nucleus (fig. 106). The cell wall near each protoplasmic accumulation becomes gelatinous, which allows the accumulations to protrude as small papillae (fig. 107). Each of these papillae early becomes cut off from the mother cell by a delicate dome-shaped membrane (fig. 108). Each of the cells so formed, with its nucleus, increases in size, and at the same time the membrane loses its convex form and becomes flattened (fig. 109).

The formation of these primary tetrasporic cells seems
to take place entirely independent of nuclear division.

On the upper border of each of these cells a finger-like outgrowth of cytoplasm is protruded (fig. 110). The nucleus then divides by mitosis in the way described for vegetative nuclei of the tetrasporic plant (fig. 110). One of the daughter nuclei remains in the basal portion of the cell, the other passes into the cytoplasmic outgrowth, which as usual becomes cut off from the basal portion by the familiar arched membrane (fig. 112), which as usual soon becomes flat. Thus is formed a small two-celled branch, with a single nucleus in each cell (fig. 113). The lower may be called the stalk cell, while the upper is the tetrasporangium or tetraspore mother cell.

During the growth of this structure, the stalk cell pushes out another cytoplasmic projection similar to the one first formed. The nucleus divides by mitosis (fig. 114), one of the daughter nuclei remaining in the stalk cell, and the other passing into the projection, which becomes cut off like the first. Thus a second tetraspore mother cell is formed on the stalk cell. A third and sometimes a fourth mother cell may be formed in the same way. The first mother cell may be regarded as terminal, the other as lateral.

In rare cases, two nuclei occur in the primary
tetrasporic cell from its inception, and in one case, at least, two nuclei have been noted in the very young tetraspore mother cell. This recalls the suggestion of HEYDRICH ('02) of a possible sexual significance of the tetraspore. Examination of a large series of developing tetraspore mother cells convinces me, however, that there is here a purely accidental phenomenon, which has no place in the normal life history, and which is not to be considered as analogous in any way to the sexual process.

The cells of the tetrasporic branch appear at first not to secrete cellulose walls of their own. The stalk cell, with its tetraspore mother cells, remains surrounded by the gelatinized wall of the vegetative cell on which it is borne. This wall, much swollen, covers the tetrasporic branch completely (fig. 115). It continues to swell and by the time the spores are ready to be discharged it seems to dissolve largely or completely in the sea-water.

The stalk cell increases in size, and its nucleus at the same time divides by successive mitoses until usually 16 daughter nuclei are finally produced. With the growth of the cell in size, the cytoplasm becomes less dense, and vacuoles appear in it. There may be a single large central vacuole (fig. 115), or several smaller ones variously dis-
posed. The connection of the stalk cell with the vegetative cell and also with the tetraspore mother cells is of the usual type. On the side toward the stalk cell, the cytoplasm of the mother cell is produced into a rather narrow strand, which meets a similar strand from the stalk cell at the point where the callus-like plugs are developed (fig. 116).

It sometimes happens that the stalk cell produces laterally a tubular process that curves up around the mother cells and resembles in appearance an involucral ray (fig. 117). This recalls the condition in Griffithsia barbata and other species, in which the tetraspores are borne laterally on short involucrate ramuli.

The tetraspore mother cell increases in size, the nucleus showing corresponding enlargement. The cytoplasm begins to show numerous small vacuoles between the rather dense cytoplasm surrounding the nucleus and that lying in the periphery of the cell.

The behavior of the nucleolus during the period of enlargement of the nucleus is interesting. As the nucleolus increases in mass, it fragments into several rounded bodies of various sizes (fig. 113). This process of fragmentation continues until from 12 to 14 rounded masses of chromatin
of about the same size are formed (fig. 119). These lie in a clump in the centre of the nucleus, staining very heavily with nuclear dyes.

At this stage the tetraspore mother cell may be considered to be mature. The length of a mature mother cell is about 20 \(\mu \), the width 15 \(\mu \), and the diameter of the nucleus 7 \(\mu \). Further changes in the mother cell are in anticipation of division into tetraspores.

From this time the changes in the cytoplasm occur mainly in connection with the vacuolar area. The vacuoles become larger and the whole vacuolar area presents a coarse spongy appearance. In the meshes are deposited numerous spheres of substance staining deeply with haematoxylin. There is reason to believe that these bodies are derived from the nucleus. As the time of nuclear division approaches, these granules become larger and fewer in number, so that it is possible, by noting their size and number, to predict in just what stage of mitosis the nucleus will be found. The granules seem to be analogous to the chromidial substance of Protozoa (see Goldschmidt, '04) and of some plants (see Tischler, '06).

The changes in the nucleus are profound. Most striking is the decrease in staining capacity of the nucleolar
masses. These become irregular in form, and at the same time fuse with one another, so that their number is reduced by more than half (fig. 120). At this stage they are in the form of thick, curved rods, in which light and darkly staining areas may be discovered. Often four dark areas may be detected in each rod, which suggests that this stage corresponds to the formation of tetrads in the oocytes and spermatocytes of many animals. Coincidently with these changes, small granules are to be seen in the nucleus near its periphery, which seem to pass out into the cytoplasm (fig. 121), to form the granules already mentioned as occurring in the vacuolar area.

The stage just described is considered to be the period of synapsis. It is of long duration, it shows a condition which does not occur elsewhere in the life history, and it immediately precedes the mitoses in which numerical reduction of the chromosomes takes place. It differs from the usual type of synapsis in that no spirem or synaptic thread is formed; but this is not to be wondered at inasmuch as nowhere in the life history of Griffithsia Bornetiana is a spirem produced. Perhaps the worm-like nuclear masses are to be considered as replacing the usual spirem stage.
While the thick, irregular rods continue to lose their capacity for taking up stains, there appear, scattered throughout the nuclear cavity, but mainly near the periphery, a number of small spherical bodies (fig. 122). In many instances, 14 of these bodies were counted; less frequently and often the number appeared to be only 13 were to be seen; in the latter event, one of the granules is larger than the rest, and is probably to be considered as representing two of the smaller bodies (fig. 123). After these bodies are formed, there may be no other trace of nucleolar material in the nuclear cavity (fig. 126) or the achromatic portion of the nucleolus may be represented by two or three faintly staining bodies of irregular outline lying near the centre of the nuclear cavity (fig. 123). This is the stage of prophase and the small bodies scattered through the nuclear cavity are the chromosomes.

Not all the nucleolus goes to form the chromosomes. As already mentioned, part of the nucleolar substance passes out of the nucleus and becomes deposited in the vacuolar cytoplasm, and part may remain in the nuclear cavity, where it forms irregular masses. The part remaining in the nucleus ultimately disappears in the cytoplasm after the nuclear membrane is dissolved.
The details of the organization of the spindle are made out with difficulty. During prophase, kinoplasmic caps are formed at the poles of the nucleus by differentiation of cytoplasm at these points. In most cases, at the centre of each kinoplasmic mass is a darkly staining body (fig. 124) probably comparable to the "centrosphere-like structures" of Polysiphonia YAMAMOUCHI, '06b). In some cases these are large and prominent; in others they could not be demonstrated at all. They are certainly not permanent structures; they seem rather to be the expressions of some temporary kinoplasmic activity. To them the spindle fibres are attached. The spindle is entirely intranuclear, and is probably differentiated from materials within the nuclear cavity, as no evidence has been seen to indicate that the fibres grow in from without, as is the case in Spirogyra (BERGHS, '06). The spindle is truncate at the poles and slightly broader at the equatorial plate (figs. 124,125). The chromosomes, which lay scattered in the nuclear cavity before the formation of the spindle, now move in toward the centre of the nucleus, (fig. 126a). Here they become arranged on the equatorial plate. Some preparations (fig. 126) seem to indicate that during this process they become associated in pairs, which soon separate;
out on this point it is impossible for me to speak with certainty at present. The number of chromosomes in the equatorial plate is approximately 14. They are small rounded bodies, rather closely crowded and not lying in exactly the same plane (fig. 127).

The axis of the spindle seems to bear no constant relation to the axis of the cell. It is more usual, however, to find the long axis of the spindle coincident with the long axis of the mother cell. The outline of the nucleus at metaphase is nearly circular, or more often, slightly elongated in the direction of the axis of the spindle (fig. 124).

At anaphase the chromosomes separate into two groups, probably of seven each (fig. 128). As the groups of chromosomes approach the poles of the spindle, the nuclear membrane fades away, and the cavity of the nucleus is obliterated by the cytoplasm. In some cases, however, this does not happen; the nuclear membrane persists throughout mitosis. During anaphase, it elongates and then pulls apart in the middle (fig. 129). Whether this diversity in the behavior of the nuclear membrane is in any way connected with certain irregularities of development to be described later, is not obvious.
As each group of chromosomes approaches the pole of the spindle, the individual chromosomes unite to form a densely staining spherical mass, which becomes the nucleolus of the daughter nucleus. When the original nuclear membrane persists, the organization of the daughter nuclei is complete on the separation of the two halves of the nucleus, by which time no trace of the spindle is seen. When, as is more usual, the nuclear membrane disappears toward telophase, the mass of chromatin in the immediate vicinity of the kinoplasmic cap becomes surrounded by a new nuclear membrane, around which the kinoplasm becomes distributed.

In any event, two daughter nuclei are formed, which lie at some distance from each other. Each is somewhat elongated, with a large, spherical, uniformly staining nucleolus in the centre, and frequently with two or three smaller bodies of chromatin in the nuclear cavity (fig. 130). The daughter nuclei are considerably smaller than the nucleus of the mother cell. Each is about 5 μ long by 6 μ broad, though the size varies. No trace of any internuclear partition has been observed between the daughter nuclei, which lie quite freely in the cytoplasm.

The daughter nuclei do not remain long in the resting condition. In each the nucleolus disappears, and seven
rounded chromosomes, probably derived from the nucleolus, appear in the nuclear cavity (fig. 131). At the same time the nucleus elongates further, and there is to be seen a kinoplasmic cap at each end. A spindle is organized as before, and the 7 chromosomes arrange themselves in an equatorial plate. The division of the two nuclei is synchronous, their axes of division lying at right angles to each other (fig. 132). At anaphase, two groups of 7 chromosomes pass to the poles of each spindle, the nuclear membranes disappearing (fig. 133). At telophase the chromosomes of each group which is in close proximity to the kinoplasmic cap, fuse to form the nucleolus of the daughter nucleus. A new nuclear membrane is formed around each mass of chromatin and the kinoplasm again becomes distributed around the nucleus (fig. 134).

The four nuclei thus formed lie very near the periphery of the mother cell, and equidistant from one another (fig. 115). Each is a definitive tetrasporic nucleus. Their arrangement in the cell is determined by the fact that one nucleus always lies at the point from which the cytoplasmic strand passes to meet the stalk cell. The structure of the nucleolus at this stage is somewhat different from that of the preceding stages. The chromatin mass is usually plainly lobulated. Outside and near this
is to be seen a much smaller, regularly spherical body, whose history I have been unable to trace. Probably it is of the same nature as the nucleolus, since, when the nucleolus fragments, as it does a little later, the smaller body is indistinguishable from the other chromatin masses.

An appearance frequently seen at this stage lends support to the view that food material is passed up from below into the tetrasporangium (see YAMANOUCHI, '06b, p. 424). The nucleus which lies near the strand of cytoplasm connecting the tetrasporangium with the stalk cell is seen to be surrounded by a mass of food material, which is probably derived from the stalk cell. The other nuclei at the same time lie in clear cytoplasm in which little stored food is visible (fig. 135).

During the progress of these changes in the nuclear content of the tetrasporangium, the deeply staining granules in the cytoplasm disappear, so that by the end of the first mitosis they are no longer visible. At the same time, the large vacuoles in the cytoplasm give place to smaller, more regular ones.

Cleavage of the cytoplasm begins always when the four nuclei begin to move toward the centre of the tetrasporangium, which happens soon after their formation. The
schicht folds inward along planes which, if continued to the centre of the cell, would cut the protoplast into 4 equal parts, presenting the familiar tripartite arrangement (fig. 136). However, the partitions are produced inwards only about two-thirds of the distance to the centre of the cell (fig. 137). The central portion of the tetrasporangium is occupied by the four definitive spore nuclei with their envelopes of kinoplasm which are in contact with one another, so that a rather definite nucleo-kinoplasmic mass is formed. In the very centre of the tetrasporangium lies the portion of the undifferentiated cytoplasm enclosed by the nucleo-kinoplasmic mass (fig. 138).

The nuclei at this stage are either spherical (fig. 139), or somewhat biscuit shaped, the inner surface being less convex than the outer (fig. 140). The nucleolus has usually by this time fragmented into 12-14 granules, similar in appearance to those in the nucleolus of the tetraspore mother cell before synapsis.

At this point of development, 5-10% of the tetrasporangia begin to show degenerative changes and do not develop further. The outer surface of the tetrasporangium becomes wrinkled, and the nuclei become very much flattened, almost wafer-like. The entire contents of the protoplast stain very heavily, owing to the
presence in the cytoplasm and in the nuclei of numerous dark granules. These degenerating tetrasporangia are easily distinguishable even in the living condition by reason of their almost black opaque appearance, and some are to be found in every tetrasporangial sorus. What causes lead to their degeneration I have not been able to determine.

In the normal tetrasporangia, the cleavage partitions, which represent folds of the \textit{hautschicht}, but which appear in section as a single line except near the periphery (fig. 137), split so as to reveal clearly their double nature. At the same time the cytoplasm, which lay in close contact with the partitions, separates along the line of the partitions so that the cleavage furrows become wide as well as deep (fig. 138). Even at this stage, however, they extend no further in than to the edge of the nucleo-kinoplasmic mass. Coincident with these changes in the partitions, the nuclei which were flattened become again approximately spherical. Vacuoles develop in the cytoplasm in the centre of the nucleo-kinoplasmic mass. At the same time, small chromatophores begin to appear in the cytoplasm along the outer border of the tetrasporangium. These increase in size, and a few extend along the partitions into the body of the protoplast. In this condition the tetra-
sporangium remains for a long time, increasing in size and in vacuolization of the cytoplasm. The significance of this incomplete separation of the spores probably lies in the fact that food material seems to pass up through the basal cell. If the spore were completely separated before maturity, only one of the four would be in communication with the stalk cell, the source of supplies. However, inasmuch as the chromatophores at this stage are well developed, it seems probable that the tetrasporangium is capable of elaborating at least part of its food material for itself.

BERTHOLD ('86) seems to have been the first to point out this incomplete separation of the tetraspores of red algae after the division of the nucleus of the mother cell, though SCIBITZ ('79a) had given an account of two successive nuclear divisions in the tetraspore mother cell.

The tetrasporic branches are from their inception surrounded by the swollen wall of the vegetative cell on which they are borne. A portion of this wall is carried out by the developing tetrasporic cells. As the cells develop, the portion of the wall surrounding them swells greatly and appears to become gelatinized, ceasing to respond to the tests for cellulose.
The tetrasporangium, with the incompletely separated spores, increases markedly in size. The nuclei also enlarge and show abundant chromatin, in the form of the 12-14 masses already mentioned. Each mass is differentiated into lightly and darkly staining areas. Not infrequently the number of these masses is greater than this, as many as 20 having been counted in some cases; and sometimes the number is considerably less than 12. This variability in the number of chromatin masses in the resting nucleus serves to show that they do not exhibit the same constancy in numbers that the chromosomes show, and therefore are not to be relied on as an index of the condition of the nucleus, whether haploid or diploid.

As the tetrasporangium enlarges, the cytoplasm becomes more coarsely vacuolate, and the vacuoles in the central protoplasmic mass become conspicuous (fig. 14). The partitions now grow in until they meet in the centre of the tetrasporangium, their ingrowth being apparently aided by the position of the large central vacuoles already mentioned (fig. 142). The spores are now completely separated, with the nuclei in the inner corners. The nuclei wander toward the centre of the spores, the chromatophores at the same time migrating so as to line the entire periphery.
(fig. 143), and the spores round off, becoming oval in shape. The lowest spore, up to this time attached to the stalk cell by a slender thread of cytoplasm, breaks away at the point of attachment, and the strand is withdrawn into the body of the spore. The gelatinized cell wall, now very much swollen, appears to dissolve in the sea water, and the four spores are set free, almost immediately becoming spherical. Like the carpospores, they are heavier than sea-water, and slowly sink, if left undisturbed.

The mature tetraspore resembles the carpospore in appearance. It is approximately spherical. In the centre the large nucleus is conspicuous, with its chromatin segregated into 12-20 small masses. Immediately around the nucleus is a zone of rather dense cytoplasm; outside this the cytoplasm is coarsely vacuolar. In the peripheral cytoplasm is a single layer of chromatophores, outside which is the limiting membrane of the spore. No cellulose cell wall is visible.

The average size of the tetrasporic structures is shown in the following table:
The tetrasporic structures in a single sorus are of very various ages. While the first-formed tetraspores are developing, new tetraspore mother cells are being formed nearer the cross wall between the vegetative cells, the older tetraspores being carried away from the cross partition by the growth and the stretching of the wall of the vegetative cell. A longitudinal section of a sorus shows primary tetrasporic cells being formed very near the point of junction of the vegetative cells; outside these are the older tetraspore mother cells; farther out mature spores are to be seen; while farthest from the center occur the involucral rays (fig. 144).

The number of tetraspores produced in a single sorus is quite large. The average number in well developed sori was found to be about 300.

The process of nuclear division in the tetraspore mother cell of Griffithsia offers many striking points of difference from the same stages in the life history of
Polysiphonia; it resembles much more nearly similar stages in Corallina (DAVIS, '98). As these three forms are the only members of the Rhodophyceae in which the behavior of the tetraspore mother cells has been carefully studied from a cytological standpoint, it may be well to summarize here some of the points of resemblance and difference:

<table>
<thead>
<tr>
<th>Polysiphonia</th>
<th>Griffithsia</th>
<th>Corallina</th>
<th>Polysiphonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting nucleus:</td>
<td>chromatin in large central granules</td>
<td>plasmosome</td>
<td>in reticulum of varying number</td>
</tr>
<tr>
<td>Resting nucleus:</td>
<td>nucleolus</td>
<td>karyosome with some plasmosome substance</td>
<td>plasmosome</td>
</tr>
<tr>
<td>Synapsis:</td>
<td>chromatin</td>
<td>broad, irregular bands, free at the ends</td>
<td>double spirem</td>
</tr>
<tr>
<td>Origin of chromosomes</td>
<td>from central nucleolar bodies</td>
<td>from scattered chromatin granules</td>
<td>segmentation of spirem</td>
</tr>
<tr>
<td>Fate of nucleolus</td>
<td>achromatic portion disappears at prophase or persists till telophase</td>
<td>disappears at prophase</td>
<td>disappears after prophase</td>
</tr>
<tr>
<td>Centrosome or centrosphere</td>
<td>kinoplasmic cap with darkly staining center</td>
<td>centrosphere</td>
<td>kinoplasmic cap with darkly staining center</td>
</tr>
<tr>
<td>Daughter nuclei</td>
<td>assume resting condition</td>
<td>assume resting condition</td>
<td>not organized</td>
</tr>
<tr>
<td>2nd mitosis</td>
<td>in daughter nuclei</td>
<td></td>
<td>inside membrane of mother nucleus</td>
</tr>
<tr>
<td>Nuclear membrane</td>
<td>disappears or pulls apart after metaphase of first mitosis</td>
<td>disappears before metaphase of first mitosis</td>
<td>persists through both mitoses</td>
</tr>
</tbody>
</table>
This comparison serves to emphasize one point particularly. At a critical stage in the life history of rather closely related members (*Polysiphonia* and *Griffithsia*) of a highly specialized group, the cytological phenomena are of a most varied nature. During the period of synapsis and up to the time of the formation of the chromosomes, the cytological events in *Polysiphonia* are far more like those in *Lilium* than those in *Griffithsia* or *Corallina*. The behavior of the nucleus in the formation of the tetraspores in *Griffithsia* is much more similar to that in *Corallina* than to that in *Polysiphonia*, a more nearly related genus. The bearing of these facts is obvious; cytological phenomena cannot be considered trustworthy guides to relationships.
TETRASPORE LIKE STRUCTURES ON SEXUAL PLANT.

As stated above, one individual has been found which produced normal antheridia on the majority of its filaments but which produced on a considerable number of filaments structures resembling the sori of tetraspores. As this case is of considerable theoretical interest at the present time, I shall now give some of the details of the structure of this plant.

The portion of the plant bearing antheridia was perfectly normal in appearance. The cells were of the usual size and shape, and bore antheridia of the normal type in abundance. The number of chromosomes appearing in mitoses in the antheridial filaments was found to be about seven (the reduced number, characteristic of the gametophyte. Mitosis has as yet been seen in only a single nucleus of the portion of the plant bearing the tetraspore-like structures. In this case, in the dividing nucleus of the stalk cell, the number of chromosomes was seen to be seven (see fig. 147).

The branches bearing tetraspore-like structures are of the same type as those of the normal tetrasporic plant, but are composed of cells that are on an average a good deal smaller.
The early development of the tetraspore-like structures is similar in every detail to corresponding stages in the development of the normal tetraspores. Small uninucleate papillae are cut off from the upper border of the vegetative cells. Each divides to form a short two-celled branch, the lower cell representing the stalk cell of the tetrasporangian, the upper corresponding to the tetraspore mother cell (figs. 145, 146). The stalk cell increases in size and becomes vacuolate, the mother cell also becomes larger, but remains somewhat smaller than the normal tetraspore mother cell. The average diameter of the fully formed mature mother cell is about 20–22 μ as against 24 μ for the mother cell of the tetraspore. The nucleus in the two cases shows the same configuration, but remains smaller in the mother cells borne on the sexual plant. (fig. 147). Nuclear material passes out into the cytoplasm where it forms small darkly staining granules.

Involucral rays are formed in the ways characteristic of the tetraspore-sorus, usually as outgrowths from the vegetative cell outside the ring of spore mother cells, exceptionally as lateral outgrowths from the stalk cell (fig. 148).

The further development of the mother cells on the
sexual plant differs strikingly from that of the normal tetraspore mother cells. In the majority of cases, the nucleus divides (whether by mitosis or amitosis I have not yet been able to determine), and cleavage begins at the periphery (fig. 149). The cleavage furrows do not advance far into the body of the mother cell. The surface of the cell begins to show irregular wrinkling, and degenerative changes set in similar to those described for certain tetraspore mother cells. The number of nuclei in cells in which cleavage furrows begin is usually 4-3, of which some are very much larger than the rest (fig. 149).

One case deserves special mention. Sixteen nuclei lie scattered in the cell, which shows no trace of the formation of cleavage furrows (fig. 150). The whole cell presents the appearance of a germinating spore. It would seem that here the cell corresponding to the tetraspore mother cell behaves as a monospore; though whether such a cell ever produces a normal plant is uncertain.

The chromosome-history of the nuclei of the cells just described has not yet been determined.
GERMINATION OF SPORES.

The spores germinate readily in the laboratory. If a mature tetrasporic or cystocarpic plane be placed in seawater over night, young sporelings up to the three-celled stage will be found abundantly attached to the bottom and sides of the vessel the next morning. Many of the stages of germination here described were collected in the field under natural conditions, but the majority of the figures given, especially of the younger stages, were taken from material cultivated in the laboratory.

The similarity of the structure of the carpospores and the tetraspores has been noted above; the phenomena of germination are also practically the same in the two kinds of spores. On being released, the spores become spherical and settle slowly in the water. They appear to become attached to the surface of any solid body they touch, such as rocks, glass, other algae, and even such soft bodies as the gelatinous substance enclosing chains of diatome.

During the progress of germination, soon after the spore becomes attached, there is formed around it a cellulose wall of the usual type, which becomes tolerably thick, especially around the basal region of the sporeling. At the same time, numerous starch grains also become visible
in the cytoplasm of the spore. Several hours after the spore is shed, the nucleus divides by mitosis. During this time there is no noticeable change of shape in the spore.

Opportunity has not occurred for the examination of a large series of dividing nuclei in the sporelings, but in the cases examined, the mitoses were of the type usual in vegetative nuclei. In the dividing nuclei of sporelings from tetraspores, about 6 or 7 chromosomes appear on the equatorial plate (fig. 155a). In the sporelings from carpospores, the number of chromosomes is always greater than this, but appears to be less than the number that might be expected (14). The small size of the nuclei in the sporelings renders exact counting of the chromosomes very difficult, but it may be stated with certainty that as many as 9 chromosomes appear on each spindle in the mitoses of the nuclei of the sporelings from carpospores (fig. 155b); and this is believed to be sufficient evidence for regarding these nuclei as diploid in character.

The daughter nuclei withdraws to opposite sides of the spore (fig. 154), and divide again to form 4 nuclei, which in turn divide to form 8 (fig. 156), then 16 (fig. 157). The increase in the number of nuclei is not accompanied by a corresponding increase in the size of the spore; the size of the nuclei becomes less with each suc-
ceeding division. At about this time, the sporeling changes its shape, pushing out, at the point of attachment, a small rounded projection, (fig. 158) which later becomes cut off as the basal cell. Immediately after this projection is formed, the sporeling elongates, becoming about twice as long as broad, but without undergoing cell division (fig. 159).

As these changes take place, the cytoplasm migrates more and more to the periphery. The central part of the sporeling is occupied by small regular vacuoles, whose exceedingly thin walls are roughly hexagonal in section (fig. 160). A single large central vacuole such as is characteristic of the vegetative cells of the older plants is not usually formed until the sporeling reaches the 3-celled stage.

Cell division occurs usually when about 16 nuclei are present. A wall at right angles to the long axis of the sporeling cuts off a small basal from a large apical cell (fig. 161). Shortly after this, without further elongation of the sporeling, the apical cell divides into two by a wall parallel with the first (fig. 162). The details of the formation of these walls were not followed out. As the partitions have not been seen to assume the arched
shape characteristic of the first type of cell division at other points in the life history (see p. 25), it may be inferred that they are formed by the ingrowth of a ring of cellulose (p. 27), such as is formed in the divisions of the cells of Cladophora. From the two divisions, a small obovate 3-celled sporeling results, which consists of a smaller somewhat pointed basal cell, and two larger rounded cells towards the apex, the three cells lying in a row (fig. 163). At this stage, the chromatophores and protoplasm are so closely packed in the peripheral portion of the cytoplasm that the sporeling appears dense and opaque. The pointed end of the basal cell is filled only with homogeneous protoplasm, starch grains and chromatophores being absent from this region (fig. 162). Intercellular connections were not demonstrated in the small 3-celled sporelings, though they are apparent after the enlargement of the cells.

The description given above applies to the majority of sporelings examined. Many sporelings, however, show variations from the type described. For instance, it happens rather frequently that cell division occurs after the formation of only four nuclei (fig. 161), and before the sporeling assumes the elongated shape represented in fig. 159.
The 3-celled stage is first attained in about 12 hours from the time the spore is shed. It persists, under laboratory conditions, for several days, during which time the three cells change greatly in size, shape, and appearance.

The most striking changes occur from the second to the third day after the spores are shed. The cells increase greatly in size, and a large central vacuole is formed in each. The protoplasm and inclusions being spread over a larger area form a thin film, in which the chromatophores are no longer crowded, but are separated by considerable clear spaces; the sporeling therefore becomes lighter in color and more transparent. The following comparison of sporelings of the second with those of the third day gives some idea of the great increase in the size of the cells.

<table>
<thead>
<tr>
<th>Length</th>
<th>2 1/2 day</th>
<th>3 1/2 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>apical cell</td>
<td>.037 mm.</td>
<td>.133 mm.</td>
</tr>
<tr>
<td>middle cell</td>
<td>.037</td>
<td>.467</td>
</tr>
<tr>
<td>basal cell</td>
<td>.048</td>
<td>.107</td>
</tr>
<tr>
<td>total</td>
<td>.12</td>
<td>.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breadth</th>
<th>2 1/2 day</th>
<th>3 1/2 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>apical cell</td>
<td>.067 mm.</td>
<td>.073 mm.</td>
</tr>
<tr>
<td>middle cell</td>
<td>.067</td>
<td>.1</td>
</tr>
<tr>
<td>basal cell</td>
<td>.04</td>
<td>.073</td>
</tr>
</tbody>
</table>

The number of nuclei in the cells, even after enlargement, is small. Several counts indicated that there are in the apical cell on an average 25-30 nuclei, in the middle cell 20-25, in the basal cell 5-10. These nuclei in
the resting condition are very small, averaging, perhaps, \(1.5 \mu\) in diameter. In structure they resemble the nuclei of the older vegetative cells.

The changes in the apical and middle cells consist mainly of (1) a great increase in length, (2) slight increase in breadth, and (3) the distribution of the protoplasm and inclusions over a much larger area.

In the basal cell, besides an increase in size, the most striking changes are those of shape. These changes depend to a large degree on the substratum. In case the sporeling is attached to some soft body, such as another alga, the basal cell remains somewhat top-shaped, with the pointed end applied to, or in some cases wedged into the substratum (figs. 164, 165, 166, 167). If, however, the sporeling is attached to a hard body, such as glass or stone, the basal cell becomes greatly elongated, in some cases coming to equal in length all the rest of the sporeling (figs. 168, 169). When this occurs, the basal cell resembles very strikingly a rhizoid of the older plant.

When the stage just described is reached, there seems to come a natural pause in the life-cycle. In a state of nature, a great many more sporelings are found in the 3-celled stage than in any other, indicating that this stage
occupies a longer time in the course of development than any other. Under laboratory conditions, the 3-celled stage is retained at least several days, and frequently development goes no further. The factor determining further development seems to be, in part at least, the character of the substratum. In the cultures examined, it was found that on glass or on clean, though rough stones, the basal cell continued to elongate, though without further division of the apical cell, until the whole sporeling lost its natural color and died. However, in case the elongating basal cell came in contact with some soft substance, it fastened itself immediately, and normal development proceeded. In a state of nature, young sporelings of *Griffithsia* have been most commonly found at Wood's Hole, on *Champia parvula* and on *Lomentaria uncinata*, though they occur on other algae and on *Zostera marina*. Young plants were sometimes found on stones, the surface of which appeared clean, but proved, on careful examination, to bear other sporelings, to which the plantlets of *Griffithsia* were probably at first attached. There is no evidence of parasitism, however, in the early development of *Griffithsia*. Sporelings flourish on any soft substratum, such as bits of cotton cloth. From the observations noted above, it seems clear
that Griffithsia Bornotiana needs some other substratum than the stones on which the mature plant is often found, to pass through the early stages of its existence.

When the sporeling is growing on some other alga, the basal cell may simply become attached to the surface by some adhesive at the surface of contact (fig. 164), or may grow in between the cells of the algal substratum (fig. 165) or may even twine about it in the manner of the rhizoidal tendrils.

Further development of the basal cell results in its division into cells of various sizes and irregular shape. Usually short tubular projections resembling rhizoids, become cut off (figs. 170, 171) by the circular ingrowth of the cell wall. Somewhat less frequently dome-shaped segments are formed on the sides of the basal cell (fig. 172). In either case a multinucleate holdfast, or attaching disk is formed, all the cells of which are derived from the division of the basal cell.

The apical cell cuts off daughter segments in the usual manner (fig. 174). By the time the sporeling is four or five cells long, lateral branches appear on the upper borders of the cells below the apex (fig. 175). The rapid growth of the lateral branches gives the characteristic
ic false dichotomy to the young thallus. Branching is profuse near the base of the sporeling. Frequently five or six lateral branches are given off from each of the lower cells, so that the young plant is copiously branched. In this event, the cells bearing numerous branches becomes thick-walled and almost globose in shape.

It is interesting to note that when numbers of sporelings are found in immediate vicinity in nature, all are often at precisely the same stage of development. For instance, about 15 sporelings were observed on a single branch of Lomentaria; all were at the stage of germination represented in figure 174.

Hairs are usually wanting in the young plants; nor are rhizoids developed except from the basal cell.

The phenomena of germination noted above agree in all essentials with the account of Griffithsia Bornetiana given by Miss DERICK ('99), and are in line with the phenomena reported in other species by TOBLER ('07).

It is of considerable interest that the coenocytic condition characteristic of the cells of the mature plant is attained in the sporeling before any sign of cell division or differentiation. The recapitulation theory

\[\text{(1)}\]

A highly organized plant, which begins its development with the simplest stages and gradually advances to a state of higher differentiation, repeats in its ontogeny its
has been shown in many cases to be applicable to other plants, e.g., in the formation of the megaspores of the Hydropteridinae (STRASBURGER, '02), in the forms of juvenile leaves (BERRY, '06), in the post-embryonal stages of the Laminariaceae (SETCHELL, '05), in the formation of the eggs of the Fucaceae (for the facts, see OLMANNUS, '05, pp. 47-8). If this theory is at all applicable to Griffithsia, we should expect some evidence of it at the times in the life history when the plant returns to the unicellular condition. If there is virtue in the conclusions drawn from comparative morphology, the ancestors, and even the comparatively recent ancestors, of Griffithsia, possessed uninucleate cells. The coenocytic habit was acquired late in the history of the race, and we should expect it, therefore, to appear late in the history of the individual, so that the cells of the early stages would be uninucleate; yet in the germinating spore of Griffithsia the first visible change is the attainment of what we must regard as the recently acquired coenocytic habit. In this respect, then, Griffithsia does not conform to the recapitulation theory.

VEGETATIVE MULTIPLICATION.

Griffithsia Bornetiana may reproduce itself vegetatively in two ways: first, by accidental isolation and subsequent growth of single cells or small pieces of a filament; second, by the production of new plants from tendrils.

The first method of propagation was described for G. Corallina by JANČZEWSKI ('76) and mentioned as occurring in G. Bornetiana by FARLOW ('79). More recently TOBLER ('03, '03a, '02) has called attention to the fact that Griffithsia, Bornetia, Dasya, Polysiphonia, and other forms may reproduce themselves under laboratory conditions by a process of fragmentation of the filaments and growth of the resulting portions into new plants. In G. Bornetiana this process takes place not rarely in nature. In such cases the isolated cell produces a rhizoid from its base and a new growing point from its apex (figs. 151,157).

The rhizoid is formed normally in the manner already described. The apical cell is produced by the accumulation of protoplasm at the tip of and subsequent unequal division of the parent cell in the usual manner.

Vegetative propagation by means of tendrils has been described on page 33.
DISCUSSION OF RESULTS.

From the cytological evidence brought forward in this paper it seems probable that there exists in *Griffithsia Bornetiana* an alternation of generations similar to that which has been suggested for *Polysiphonia violacea* (YANAGUCHI, '06). The fusion nucleus, which contains 14 chromosomes, with the cooperation of the cytoplasm of some of the cells of the procarp, produces the cystocarp, in which are formed carpospores; the nucleus of each of these contains 14 chromosomes. The nuclei of the tetrasporic plant contain each 14 chromosomes; and it therefore seems reasonable to assume that the tetrasporic plants arise from carpospores. In the first division of the nucleus of the tetraspore mother cell, the number of chromosomes is reduced one-half, so that 7 chromosomes enter the nucleus of each tetraspore. It seems probable that on germinating, the tetraspore gives rise to an individual, whose general morphological relations and vegetative structure are similar to those of the plant producing tetraspores, with two significant exceptions, (1) the nuclei show at mitosis 7 chromosomes instead of 14, and (2) the individual bears sexual organs instead of asexual spores. In other words, in *Griffithsia* a sexual plant is probably succeeded by an
asexual plant of similar morphological relations.

The proof of this hypothesis must rest on actual cultural experiments, and it is much to be desired that such experiments be carried out.

Since STRASBURGER ('94) showed that in the Archegoniates the double number of chromosomes is characteristic of the sporophyte and the single number of the gametophyte, the main facts have been confirmed in so many forms that many botanists have come to consider that the chromosome number alone is a trustworthy guide for the identification of the two generations: that plants showing the diploid condition of the nucleus necessarily belong to the sporophyte, and that where the haploid condition of the nucleus obtains, the gametophyte is necessarily involved. Botanists have come to speak of the sporophyte as the "2x-generation" (LOTSY, '04), and of the gametophyte as the "x-generation"; and undoubtedly within the Archegoniate series such a conception is very useful. However, even in Archegoniates, where the rule is so generally applicable, recent work tends to show that the diploid condition of the nucleus is not necessary for the differentiation of the sporophyte (YAMAUCHI, '07), nor is the haploid condition necessary for the differentiation of the gametophyte (FALKER...
and DIGBY, (07).

In thallophytes, the evidence at hand indicates great diversity in the point at which the numerical reduction of chromosomes takes place. Even in the single group of Rhodophyceae, the point of reduction occurs at different places in the life history of different species. When one comes, therefore, to regard the chromosome number as the sole test for the delimitation of sporophyte and gametophyte, it seems probable that confusion will result. With this in mind, I shall now review briefly the opinions expressed by workers in this field as to the alternation of generations in the red algae; and shall venture to offer some suggestions as to the meaning of the rather complicated nuclear life histories of members of this group.

OLTENARDS, ('98) after a careful study of the development of the cystocarp in four genera, came to the conclusion that the sporogenous cells constitute a generation similar to the sporophyte of the Archegoniate series. Later, ('05, '07) he elaborated this conception and expressed the opinion that the sporophyte is of antithetic origin, i.e., that it became gradually intercalated in the life history by a series of stages of increasing complexity. In those forms in which the tetraspores are borne on distinct
plants, he regards the tetraspore-producing plant as a "facultative gametophyte", which is a result of a process of differentiation similar to that which produced dioecism in many of the Archegoniates. The tetraspores he considers analogous to the gemmae of certain liverworts. Admitting the possibility that a numerical reduction of the chromosomes may take place in the tetrasporangium, he expresses the opinion that the number of chromosomes is not the final test of alternation of generations. "Ich vermute, die vergleichende Untersuchung des ganzen Entwicklungsganges führt eher zum Ziel, oder aber die Kombination beider Methoden" ('05, p. 273).

The work of Wolfe on Nemalion multifidum ('04), in which he found a numerical reduction of chromosomes just previous to the production of carpospores, furnished a cytological analogy between the cystocarp of the Rhodophyceae and the sporogonium of the Bryophytes, and strengthened the position of OlTMANN's.

YAMANOUCHI ('06b), after a very complete cytological study of Polysiphonia violacea, reached the following conclusion: "The sexual plants and the tetrasporic plants present the two distinct phases of an antithetic alternation of generations, with the cystocarp a part of the sporophytic phase" (p. 433). This conclusion is based on the dis-
covery by YAMANOUCHI that the dividing nuclei of the tetraspore-producing plant throughout its history, as well as those of the sporogenous cells of the cystocarp, show 40 chromosomes (the 2x number), while the nuclei of the sexual plants show 20 chromosomes (the x number). The number of the chromosomes is reduced in the divisions of the nucleus of the tetraspore mother cell; the double number is restored by the union of the nuclei of the gametes. In discussing the origin of the tetraspore, YAMANOUCHI surmises that in some such form as Batrachospermum, in which monospores are borne along with gametes on the sexual plants, reduction may have been suppressed in the formation of the carpospore, "so that it germinates with the sporophytic number of chromosomes, producing a plant which consequently becomes at once a part of the sporophytic phase. It is quite possible that the first tetraspore mother cell corresponded to monospores on the sexual plant except that they had the double number of chromosomes, since such reproductive cells would very naturally become the seat of the delayed reduction phenomena. The resemblance in general morphology of the tetrasporic plants in the red algae to the sexual plants would be expected, because they live under similar environmental conditions" (p. 435).
The views of OLTMAENS and YAMANOUCHI coincide so far as regarding the sporogenous cells of the cystocarp as belonging to the sporophytic phase of an antithetic alternation of generations. The point of departure lies in the interpretation of the tetraspore-producing plant. Because of its general morphological identity with the gametophyte, OLTMAENS regards this as a part of the gametophyte, which has become differentiated for the production of tetraspores. Because of the diploid condition of its nuclei, Yamanouchi regards the tetrasporic plant as a part of the sporophyte, whose resemblance to the gametophyte is stamped on it by "similar environmental conditions".

For the purposes of the present discussion, I shall assume from the cytological evidence what it will take cultural experiments to prove, namely, that in those red algae in which tetraspores and gametes are regularly formed on separate individuals there is an actual succession of sexual and tetrasporic plants, the reproductive bodies of one kind of plant always producing the other kind of plant.

YAMANOUCHI’S suggestion (’06b) that the tetrasporic plant may have arisen phylogenetically by the postponement of the phenomena of reduction from the formation of carpospores to the production of asexual spores seems to be re-
rendered probable by what we know of other groups of plants. In the simplest plants which have been investigated from this standpoint, the position of reduction in the life history seems to be at the first divisions of the fusion nucleus, as is described in Coleochaete (Allen, '05), certain desmids (Klebahn, '91), Spirogyra (Cheilewsky, '00), and in Myxomycetes (Kraenzlin, '07). Beginning with the simple Bryophytes, the familiar Archegoniate series shows a progressive removal of the point of reduction from the point of fusion of the sexual nuclei. These and other examples seem to show that there is a general tendency throughout the plant kingdom to prolong the diploid condition of the nucleus through the greater part of the life history.

Nowhere is this more plainly shown than in the Uredineae (Blackman, '04, Blackman and Fraser, '06, Christian, '07). This group is characterized by a succession of phases, or generations, which have been shown by Christman ('06, '07) to be morphologically equivalent, though each ends in a distinct form of spore. Now nuclear association, which has been regarded as the equivalent of fertilization in this group, occurs, in all forms in which the aecidial stage is present, in those cells of the mycelium which give rise to the aecidium. The process of numerical reduction
of the chromosomes, or, to speak more accurately, of the chromatin, occurs always in the last spore-form preceding the production of aecidia, in the teleutospore when present. The diploid condition, extending from the aecidium to the teleutospore, is lengthened by the intercalation of new phases, which, in some cases, seem to have the power of continuing the diploid generation indefinitely. The haploid generation, from the teleutospore to the binucleate cells at the base of the aecidium, is never lengthened by the intercalation of new phases. In other words, in the Uredineae the diploid generation has become prolonged throughout the greater portion of the life history.

In the red algae, it seems likely that a similar postponement of reduction has taken place. In the Nemalionales, which is considered the most primitive group of the Rhodophyceae, the point of reduction is removed from the point of nuclear fusion only by the few cell-generations in the cystocarp (WOLFE on Nemalion, '04). In the higher forms, such as the Rhodomelaceae (YAMAGOUCHI on Polysiphonia, '06), and the Ceramiaceae (Griffithsia), nuclear reduction is separated from nuclear fusion, not only by the cell-generations of the cystocarp, but also by all the divisions of the vegetative cells of the tetrasporic plant. That is,
the diploid phase has come to occupy the greater portion of the life history.

The biological meaning of this apparently general tendency in the evolution of plant structures is hinted at by the experiments of Gershinskii, ('01). After studying the growth of vegetative cells of Spirogyra in which nuclei had been induced to fuse, Gershinskii came to the conclusion that the growth of a cell which has an unusual amount of nuclear material is more vigorous than that of a cell with the usual nuclear content. The cell wall, the chromatophores, and apparently the protoplasm grow more vigorously. Such cells divide only after they have reached a size noticeably larger than normal. (see Bot. Gaz. 35, 224-5, '03).

If, then, the presence of nuclei with the double chromatin content imparts greater vigor to the cell, we should expect to find some evidence of this greater vigor not only in the size, but in the rate of growth of the tetrasporic plants of Griffithsia. A comparison of sexual plants with tetrasporic plants does not reveal any constant difference in the size of the resting nuclei or in the size of the cells of the two kinds of individuals. However, a comparison of those cells of the diploid individual which
produce sori of tetraspores with the occasional cells of the haploid plant which form similar structures shows a striking difference in size, the cells with the diploid nuclei being much larger.

More important from this standpoint is the fact that not only in *Griffithsia*, but in red algae generally where tetrasporic and sexual plants occur side by side, the tetrasporic plants are, as a rule, more abundant (p. 4). In *Griffithsia Bornetiana* the number of tetraspores produced is certainly much greater than the number of carpospores, and we should expect, therefore, if the two kinds of spores were equally vigorous, that the number of sexual plants would greatly exceed the number of tetrasporic plants; whereas the reverse is the case. It seems possible that the carpospores have a greater capacity for development than the tetraspores. Cultural experiments along this line are much to be desired.

If the view is correct that a postponement of reduction has occurred in some Rhodophyceae, it is evident that, besides the alternation of the gametophyte (the sexual plant) with the antithetic sporophyte (the sporogenous cells of the cystocarp), there is a succession of homologous phases, inasmuch as a tetrasporic individual regularly
succeeds a sexual individual of identical morphology. This latter condition is not paralleled in the Archegoniate series; and since the terms gametophyte and sporophyte have come to have a special significance in connection with such conditions as are found in the Archegoniates, neither of these terms should be applied to the tetrasporic plants of Griffithsia and Polysiphonia. The tetrasporic plant has probably been intercalated in the life history of the red algae, but there is no evidence for the belief that it has been intercalated by gradual integration and differentiation of a simple product of the germination of the zygote, which product was at first unlike the sexual plant and which represents a new departure in the life history; and the intercalation of an unlike phase seems to be the very pith of the theory of antithetic alternation (see BOYER. 89-91).

According to this view, the tetrasporic plant probably arose, when first produced, with the complete differentiation characteristic of the species. The best evidence for this conclusion is based on the morphological identity of the tetrasporic with the sexual plant. Similar environmental conditions would hardly suffice to produce identity of form in two individuals unless the individuals were
from the beginning identical. The tetrasporic plant of a red alga may be said, then, to be homologous with the sexual plant.

That the two phases are homologous is evidenced, not only by their similarity of structure, but by the fact that either seems capable of producing the morphological equivalent of the reproductive structures of the other. It has been known since Bornet first called attention to the fact () that in many species of red algae structures resembling tetraspores are occasionally found on the sexual individuals. This phenomenon has been carefully investigated in Polysiphonia violacea and Griffithsia Bornetiana. In Polysiphonia, Yamatouchi ('06b) found that the development of these tetraspore-like structures ceases at the mother cell stage; cleavage of the cytoplasm may begin, but normal nuclear division is absent. In Griffithsia, the phenomena observed have been similar to those noted in Polysiphonia, except that by the time the abortive cleavage begins, the nucleus has divided into two or three. The cleavage planes have never been observed to reach the centre of the cell, and it is quite evident that tetraspores are not formed, since the whole cell becomes withered and wrinkled, resembling the degenerated tetrasporangia de-
scribed on page 69. In one instance, however, a mother cell was observed in which no trace of cleavage of the cytoplasm was apparent, and in which the number of nuclei had increased to the whole structure resembling very much the early stages of germination of a normal spore. It seems quite possible that the tetraspore mother cells borne on the sexual plants sometimes germinate as monospores, though this can be ascertained only by cultivation.

On the other hand, tetrasporic plants may at times produce structures morphologically identical with procarps. Text-figure 1 is taken from a tetrasporic plant of _Spermatothamnion Turneri_ collected at Wood's Hole in August, 1907, and shows tetraspores and procarp on opposite branches of the same filament. Text-figure 2 shows a section of the tetrasporangium in which the definitive tetraspores are formed, though not yet separated. Antheridia have not been reported as occurring on _Spermatothamnion Turneri_ at Wood's Hole, and cystocarps are very rarely produced. Whether functional gametes are ever produced on an individual which bears normal tetraspores is not known.

Another species of _Spermatothamnion_, _S. roseolum_, is extremely interesting from our point of view. PRINGSHEIM states that in this species, which he collected on the
coast of Helgoland, "Kapselfrüchte, Vierlingsfrüchte, und Antheridien normal zusammen auf denselben Exemplaren auftreten" ('61, p. 26). Whatever may be the conditions in Polysiphonia and Griffithsia, in which tetraspore-like structures occur only occasionally on the sexual plants, it seems highly unlikely that such a careful worker as PRINGEHEIM should have mistaken for tetraspores structures which really never became separated as tetraspores. Assuming, then, that the structures described by PRINGEHEIM were really normal tetraspores, it becomes at once evident that differentiation into homologous successive sexual and asexual phases has not been brought about in all Florideae above the Nemalionales, but only in those in which the tetraspores and sexual organs are borne on distinct plants. Cytological investigation of such a form as Spermothamnion roseolum is much to be desired.

The theory of homologous alternation in the red algae outlined above is almost identical with the view of PRINGEHEIM as to the relations within this group ('76). PRINGEHEIM states (p. 397) "die Annahme ist nachstliegende dass bei Florideen und Dictyoteen zwischen Exemplaren mit Kapselfrüchten und Exemplaren mit Vierlingsfrüchten eine Abwechselung besteht". PRINGEHEIM'S view was based, however,
on a very different kind of evidence from that brought forward in the present paper.

The evidence at hand seems to justify the following conclusions:

1. There is in Griffithsia an antithetic alternation of generations, the gametophyte being represented by the sexual plants, the sporophyte by the sporogenous cells of the cystocarp.

2. In addition to this, there is a regular succession of tetrasporic individuals and sexual individuals. The tetrasporic individuals resemble the sporophyte in number of chromosomes; they resemble the gametophyte in morphological differentiation. They are to be considered as a phase of an homologous alternation of generations, not the equivalent, wholly or in part, of the sporophyte of Archegoniates.
VITA.

Ivey Foreman Lewis was born in Raleigh, North Carolina August 31, 1882. He received the degree of A. B. from the University of North Carolina in 1902, and that of M. S. in 1903, being Assistant in Biology during 1902-3. He was Instructor in the University of North Carolina Summer School in 1904. He undertook graduate work at the Johns Hopkins University in 1903 and continued in residence until November, 1905, when he was appointed Acting-Professor of Biology at Randolph-Macon College, Ashland, Virginia.

In the fall of 1906 he returned to the Johns Hopkins University, where he was the holder of a University Fellowship during 1906-7. During 1907-8 he held the Adam T. Bruce Fellowship in Biology at the same institution. In June, 1907, he was elected Professor of Biology in Randolph-Macon College, with one year's leave of absence.

While at the Johns Hopkins University, his principal subject has been Botany, his first subordinate Zoölogy, and his second subordinate Physiology.
Acknowledgment.

I wish to express my grateful appreciation of the unfailing interest and helpful criticism of Professor D. S. Johnson during the course of this investigation.