Archiv
für
Mikroskopische Anatomie

herausgegeben
von
v. la Valette St. George in Bonn
und
W. Waldeyer in Berlin.

Fortsetzung von Max Schultze's Archiv für mikroskopische Anatomie.

Achtundzwanzigster Band.
Mit 27 Tafeln.

Bonn
Verlag von Max Cohen & Sohn (Fr. Cohen)
1886.
Inhalt.

Spermatologische Beiträge. Von v. la Valette St. George. Vierte Mittheilung. Hierzu Tafel I—IV ... 1

Zur Kenntniss der Insektenhaut. Von Charles Sedgwick Minot. (Zweite Mittheilung aus dem Laboratory of Histology and Embryology of the Harvard Medical School, Boston, Mass.) Hierzu Tafel VII ... 37

Zur Frage der Secretion und der Structur der Becherzellen. Von Dr. Joseph Heinrich List in Graz ... 48

Zum feineren Bau des Wimperapparates. Von Johannes Frenzel. Hierzu Tafel VIII. (Aus dem zoologischen Institut in Kiel.) 53

Ueber den Bau des Corpus ciliare und der Iris von Säugetieren. Von Dr. med. A. Dostoiewsky aus St. Petersburg. Hierzu Tafel X und XI. (Aus dem anatomischen Institut zu Berlin.) 91

Vergleichende anatomische Studien über den Accommodationsapparat des Vogelauges. Von William B. Canfield M. D. aus Baltimore U. St. A. Hierzu Tafel XII, XIII und XIV. 121

Ueber den feineren Bau des Pferdchufes. Von Dr. C. Nörner. Hierzu Tafel XV. (Arbeit aus dem thierphysiologischen Laboratorium der landwirtschaftlichen Hochschule zu Berlin.) 171

Beiträge zur Entwicklungsgeschichte der Knochenfische. Von K. F. Wenckebach, med. cand. in Utrecht. Hierzu Tafel XVI u. XVII ... 225

Zur Morphologie wandernder Leukocyten. Von Dr. Joseph Heinrich List in Graz. Hierzu Tafel XVIII. 251
Inhalt.

Untersuchungen an der Hypophyse einiger Säugentiere und des Menschen. Von Salomon Lothringen aus Bohrka (Oesterreich). Hierzu Tafel XIX und XX .. 257

Ueber Chylusgefässsysteme bei Enchytraeiden. Von Dr. W. Michaelis in Hamburg. Hierzu Tafel XXI .. 292

Studien zur vergleichenden Histologie der Retina. Von Dr. P. Schieffer-decker, Prosector in Göttingen. Hierzu Tafel XXII, XXIII und XXIV ... 305

Ueber die Regeneration der glatten Muskeln. Von Dr. H. Stilling und Dr. W. Pfitzner, Privatdocenten in Strassburg. Hierzu Tafel XXV .. 396

Bemerkungen über Secretion und Bau von Schleimdrüsen. Von Dr. Ed. Paulsen in Kiel. (Aus dem anatomischen Institut zu Kiel.) .. 413

Zur Kenntniss des Blasenepithels einiger Schildkröten (Testudo graeca und Emys europaea). Von Dr. Joseph Heinrich List. Hierzu Tafel XXVI .. 416

Einige Beobachtungen an den Negern und Buschmännern Afrika's. Von Dr. W. Wolff in Berlin .. 421

Die beiden Keimblätter und der Mittelkeim. Von Dr. W. Wolff in Berlin. Hierzu Tafel XXVII .. 425
Spermatologische Beiträge.

Von

v. la Valette St. George.

Vierte Mittheilung.

Hierzu Tafel I—IV.

Phratora vitellinae.

Die männlichen Geschlechtsdrüsen des Weidenkäfers bilden zwei eiförmige, von oben nach unten abgeflachte Organe von 1—1,5 mm Länge und 0,5—1 mm Breite, welche am Anfange des Hinterleibes zu beiden Seiten des Darmes liegen und aus 10—15 dicht aneinander gedrängten Beeren zusammengesetzt werden, deren Inhalt ein 0,035 mm dicker Ausführungsgang umschließt.

Eingebettet in den oft tief gelb gefärbten Fettkörper, umspint sie ein feines Tracheennetz, welches sich auf der Aussenhaut verbreitet und in verästelte Endzellen ausgeht, von denen lange, feine Fäden, welchen hie und da ein Kern anhaftet, entspringen.

Entfernt man diese Anhängsel mit der Präparirnadel, so zeigen die einzelnen Drüsenbläschen eine glashelle, sehr dünne Eigenhaut. Vielleicht giebt diese noch eine Anzahl kleiner und

In den Follikeln drin, wenn solche noch vorhanden, liegen die Keimkugeln, Samenknospen, Samensprossen, Samenschläuche oder Spermatozysten.

Die Durchsichtigkeit der einzelnen Drüsenbläschen lässt die Spermatozysten in den verschiedensten Entwickelungsstufen in ihrem natürlichen Lageverhältniss erkennen. Sie zeigen sehr verschiedene Grösse und Form.

Die kleinsten und, wie ich dennoch annehmen muss, die jüngsten stellten Zellhäufchen dar, als erstes Theilungsprodukt der Samenmutterzelle oder der Spermatogonie, wahrscheinlich durch direkte Zellvermehrung entstanden und aus wenigen, jedoch verhältnissmässig grossen, mit grossem granulirten Kern versehenen Zellen bestehend. Taf. I, Fig. 1.

Bei grösseren Spermatozysten sieht man einen und in günstiger Lage oder bei Umrollen des Objectes zwei, von den Kernen der Samenzellen leicht zu unterscheidende, grosse, helle, bald mit einem runden oder eckigen oder vielen kleinen Kernkörperchen versehene, oft nur eine Art von Fadengerüst zeigende Kerne: die Cystenkerne. Taf. I und II, Fig. 2—20. Es liegen diese eingebettet in ein theils feinkörniges, theils mit gröberen, stark lichtbrechenden Körnern durchsetztes Protoplasma und sind als Zellkerne aufzufassen, deren Zellsubstanz zu einer die Samenzellen einschliessenden Hülle, der Cystenhaut zusammengeflossen ist.

Diese Anschauung habe ich bereits vor fast zehn Jahren durch direkte Beobachtung am Mehlkäfer begründet in nachfolgenden Worten:

"Zerzuft man ein Hodenstückchen der Puppe oder des Käfers gleich nach der Verwandlung, so gewinnt man eine grosse Zahl kleinerer und grösserer Kugeln, welche eine doppelte, einzelne Kerne einschliessende Membran und im Innern einen Haufen von Zellen wahrnehmen lassen. Diese Membran kommt durch eine Aneinanderlagerung einzelner Zellen zu Stande. Man kann sich hiervon überzeugen, wenn man Wasser zusetzt, welches die Zellen
aufbläht und in jeder einen Kern mit granulirtem Inhalt erblicken lässt" 1).

Erneuern und bestätigen konnte ich diese Beobachtung bei Ranatra linearis und Abbildungen hinzufügen, welche an Klarheit gewiss nichts zu wünschen übrig lassen 2).

Leider sehe ich mich genötigt, diese Angaben noch einmal hervorzuheben, weil es trotz derselben keinem Schriftsteller über Spermatogenese gelungen ist, diesen so äußerst wichtigen Punkt: die Entstehung und Weiterbildung der Spermatocysten in's Klare zu bringen.

Da muss denn für den fehlenden Begriff das alte abgebrauchte Wort — „endogene Zellbildung“ — herhalten, welches besser ganz aus der Wissenschaft gestrichen werden dürfte, oder man stützt sich auf eine durchaus unbewiesene, auf den schwächsten Füssen stehende Hypothese vom Ausstossen eines weiblichen Elementes aus der doppelgeschlechtlichen Zelle, bezweifelt selbst die Haltbarkeit dieser Theorie und giebt dem Kinde, ohne die Vaterschaft anzuerkennen, den Namen „noyau femelle“ 3), nur um ihm überhaupt eine Bezeichnung zu geben, „d'une façon précise“, die im Grunde gar nichts ausdrückt 4).

Was soll man endlich dazu sagen, wenn noch in neuester Zeit die Spermatocyste der Lepidopteren mit Haut und Haar als eine „vielkernige Zelle mit äusserlich aufliegenden kleinen Kernen“ aufgefasst und abgebildet wird von einem Autor, welcher noch Kerne aus Körnchen in einer Keimstelle entstehen lässt und diese letztere als eine Riesenzelle ansieht, „deren durch die ganze Zelle vertheilte Kernsubstanz dazu bestimmt sei, im peripheren Theile der Zelle fortwährend durch Abschneidung von Kerntheilen neue Nuclei aus sich zu erzeugen“ 5).

3) G. Gilson, Etude comparée de la spermatogénèse chez les arthropodes. La cellule. Tome I. p. 36.
4) C. Spichart, Beitrag zu der Entwicklung der männlichen Genitalien und ihrer Ausführgänge bei Lepidopteren. Verhandlungen des naturhistorischen Vereins. Bonn 1886. p. 1. Taf. I, Fig. 6, Fig. 12.
Kehren wir nach dieser Abschweifung, welche der geneigte Leser verzeihen möge, wieder zu unseren Spermatocysten zurück, die ich in dieser Mittheilung aus obigen Gründen etwas eingehender behandeln möchte.

Dass jedoch die von Gilson in Anwendung gebrachte Methode der Untersuchung für so zarte Objecte, wie sie die Spermatoogenese bietet, eine viel zu rohe und einseitige ist, habe ich bereits früher hervorgehoben; ob die, von mir befolgte, die feineren Details besser zur Anschauung bringt, wird sich gewiss von anderer Seite her bald erweisen, da die Veränderungen, welche in den Generationsdrüsen stattfinden, eine wahre Fundgrube zur Erforschung des Zellenlebens abgeben und demnach zu neuen Arbeiten auf diesem Gebiete auffordern.

Was nun zunächst die Cystenhaut betrifft, so hat man sich darunter keine dünne, unveränderliche Membran zu denken; sie bildet vielmehr eine zusammenhängende Schicht von Zellsubstanz mit eingebetteten Kernen, welche während der ganzen Dauer des Cystenstadiums die Spermatozyten einhüllt und der Vermehrung derselben durch Grössenzunahme folgt.

Bei kleineren Cysten von etwa 0,02 mm, welche meist noch sphärische Gestalt besitzen, erscheint die Umhüllungshaut sehr zart und sind die Kerne derselben klein, etwa 0,010 mm gross, hell, mit einem runden Kernkörperehen versehen. S. Taf. I, Fig. 2. Die Cystenmembran zeigt ganz feine und daneben einige grössere, stärker lichtbrechende Körnchen, welche beide Arten lebhafte Molekularbewegung bekunden, und liegt den Spermatozyten, welche sie umschliesst, dicht an.

1) G. Gilson l. c. p. 65.
Mit der weiteren Entwicklung der Spermatocyste gewinnt sie an Stärke und besitzt sehr deutlich zu erkennende doppelte Contouren, welche die Kerne zwischen sich einschliessen. Die kleinen und grösseren Körnchen nehmen zu, die Kerne wachsen, zeigen die oben beschriebene Structur und erreichen bei 0,1 mm lange Cysten eine Länge von 0,026 mm mit einer Breite von 0,022 mm. Dabei wird der Dickendurchmesser der Cystenhaut sehr wechselnd. Bei einer runden, 0,052 mm im Durchmesser haltenden Cyste mass sie an einer Stelle der Peripherie 0,007 mm, während sie im übrigen dieser dicht anlag. An ihrem Inhalte nach, nahezu ausgebildeten Cysten erreichte die Dicke ihrer Ummüllung an einzelnen Stellen einen Durchmesser von 0,021 mm. Hier war der eine Cystenkern 0,014 mm gross, rund, mit einem grösseren unregelmässig geformten Kern und mehreren kleinen versehen, der andere oval, 0,026 mm lang, 0,019 mm breit, einen 0,003 mm grossen, eckigen Nucleolus zeigend.

Die höchste Zahl der Cystenkerne betrug zwei; wo ich nur einen sah und abgebildet habe, mag dies auf einer ungünstigen Lage des Objectes beruhen.

Ich gehe nun über zur Beschreibung des Inhaltes der Spermatocysten: den Spermatocyten oder Samenzellen und den Spermatiden, wie wir jetzt diejenigen Samenzellen nennen, welche ihre verschiedenen Theilungsphasen hinter sich haben und sich direct in die Spermatosomen oder Samenkörper umbilden.

Zunächst muss ich hier noch einmal die von mir schon mehrfach erwähnte Erscheinung hervorheben, dass bei der Vermehrung der Samenzellen die Abselnürrung des Cytoplasma nicht immer mit der Kerntheilung, sei diese eine directe oder indirecte, Hand in Hand geht; eine längst festgestellte Thatsache, welche in der Spermatogenese aller Thiere vorzukommen scheint.

Aus dieser unvollkommenen Theilung der Zellsubstanz resultiren die Bilder, welche so vielfach gesehen worden sind; Zellketten, Zellsprossen, Zelltrauben: da wo das Cytoplasma an einzelnen Stellen noch zusammenhängt; anscheinend zweii- und mehrkernige Zellen: wo zwei und mehrere Kerne von einem gemeinsamen Cytoplasma umgeben werden. Dass jedoch solche Zell-complexze durchaus nicht als einheitliche Bildungen aufzufassen seien, glaube ich längst erwiesen zu haben. Sie repräsentiren vielmehr eine Summe von Zellen, welche alle Attri-
bute solcher besitzen und als ebensoviel einzelne Zellen erscheinen, als Kerne vorhanden sind.

Zerreisst man eine Spermatocyste, so kann sie ebensowohl in nur einzelne Zellen zerfallen, als in zwei-, drei- und mehrkernige Zellen, welche letzteren dann auch schon mehrrfach mit den Spermatocysten selbst verwechselt worden sind.

So bei der Beobachtung unter indifferenten Medien.

Andere Methoden der Untersuchung lassen die Contouren jeder einzelnen Samenzelle in der Cyste auf's deutlichste hervortreten; wiederum andere das Cytoplasma sämtlicher Spermatoeyten zu einem Brei zusammenfließen, in dem so und so viel Kerne noch sichtbar bleiben.

Beim vorliegenden Objecte sieht man übrigens bei meiner Untersuchungsmethode fast alle Spermatoeyten von einander getrennt, nur vereinzelt vielkernige und solche, die wie kleine Tränbechen an einander hängen und zweikernige, letztere besonders in dem Stadium der Anaphase.

Da, wo neben dem Kern im Cytoplasma ein Nebenkern auftritt, enthalten die mehrkernigen Zellen immer eben so viele Nebenkerne, wie Kerne — als Spermatoeyten, wie als Spermatiden — die Nebenkerne der letzteren wandeln sich sammt den dazu gehörigen Kernen stets in eine gleiche Anzahl von Spermatosomen um.

Es muss demnach aus dem Vorstehenden geschlossen werden, dass die vielfach vorkommende unvollständige Trennung des Cytoplasma bei den Samenzellen für die Spermatogenese selbst bedeutungslos ist.

Um die Entwicklung der Ursamenzellen aus den Geschlechtszellen zu ergründen und die Entstehung der Spermatocysten aus den Spermatozgonien genauer verfolgen zu können, war das mir zu Gebote stehende Untersuchungsmaterial nicht mehr jung genug; es hätte dabei auf das Larvenstadium der Käfer zurückgegangen werden müssen.

Nur soviel kann ich sagen, dass der Inhalt der kleinsten, von mir untersuchten Cysten aus dicht aneinander liegenden, wenigen Zellen bestand. Grössere Cysten gewannen dadurch die Form einer Maulbeere. Bei einer solchen von 0,060 mm liess sich die Cystenhaut nur schwer, ein scharf umschriebener körniger Cystenkern von 0,008 mm Größe dagegen leicht unterscheiden: die 0,010 mm grossen Samenzellen zeigten einen sehr grossen, fast
die ganze Zelle ausfüllenden, granulirten Kern und am Rande desselben fast in der halben Peripherie eine sichelförmige Verdichtung des Cytoplasma, in Gentianasäurem lebhaft gefärbt, als Anlage des Nebenkerns.

Das erste, was sich in der Spermatocytenfärbt, ist der Nebenkern in seinen so sehr verschiedenen Formen, weshalb ich Allen, welche denselben studiren wollen, jene Untersuchungsflüssigkeit angelegentlichst empfehlen möchte.

Daun erscheint er mit der Kernecontour zusammen im optischen Durchschnitt als Platte eines Siegellanges. Weiterhin nimmt er die Gestalt eines anscheinend homogenen Klöppchens an, welches sich mehr oder weniger vom Kern abhebt und höchst intensiv färbt.

An unserem Objecte lässt sich wiederum leicht nachweisen, dass der Nebenkern eine Fadenstructur besitzt.

Ist er noch erst in geringer Ausdehnung vorhanden, so zeigt er kurze, variköse Fäden, welche in der Richtung der Kernperipherie neben einander liegen, später nimmt er die Gestalt eines aus einzelnen Fäden zusammengesetzten Bandes an, welches, wie eine Spange, einen Theil der Kernperipherie bedeckt. Wenn er die Form eines Klöppchens angenommen hat, erscheint seine Structur gleichartiger.

Dies Alles wird verständlich, wenn man die Beziehung des Nebenkernes zur Mitose in's Auge fasst und daran festhält, dass er in die Mitose ein- und wieder aus derselben hervorgeht, sich wahrscheinlich an der Bildung der Spindelfäden beteiligt, jeden-
falls, wie ich mit Sicherheit annehmen zu können glaube, nach der Bildung der Tochterkerne das Residuum jener Fäden darstellt.

Bei den Spermatiden und ihrer Umwandlung zu Spermatozomen muss ich etwas länger verweilen.

Die Spermatiden bilden, wenn sie aus der letzten Mitose der Spermatozyten hervorgegangen sind, kleine runde Zellen von 0,008 mm Durchmesser. Sie enthalten zwei Körperchen von 0,0026 mm Grösse, welche unter sich sehr verschieden sind. Das eine ist rund, glänzend, homogen und äusserst chromatophil, während das andere Körperchen, weniger lebhaft gefärbt, als ein kleiner Fadenknäuel mit unregelmässigem Contour erscheint.

Das erstere ist als Kern der Spermatide anzusprechen, das zweite, wie ich mit Sicherheit beobachtet zu haben glaube, aus dem Reste der Spindelfasern nach beendigter Mitose hervorgegangen, stellt den Nebenkern dar, Taf. II. Fig. 27. Wenn durch die Entstehungsweise dieses letzten Nebenkernes in der Entwicklungsreihe der Samenzellen nicht seine Bedeutung sicher gestellt würde, so könnte man sehr geneigt sein, ihn seiner chromatophilen Neigung wegen als Kern und den Kern als Nebenkern zu definiren.

Der Nebenkern der Spermatide behält anfangs noch

1) L. c. p. 73 u. f. Taf. III, IV u. V.
2) J. B. Carnoy, La cytodièrèse chez les arthropodes. La cellule. T. II. 1865. p. 269 u. f. Taf. IV.
Spermatologische Beiträge. 9

Der in dieser Weise aus dem Nebenkern und Kern hervorgegangene Kopf des Samenkörpers hat eine Länge von 0,012 mm, während der Faden 0,087 mm misst.

Stets hängen ihnen kleinere oder grössere Cytoplasmaklumpchen an, wie man auch solche bei reifen Spermatozysten am unteren Ende, oft in ganzen Ballen noch angehäuft, findet.

Mit zunehmender Reife verschwinden jene und der ganze Faden erscheint von einer Schicht Zellsubstanz eingehüllt und krämt sich dabei spiralig in kurzen Touren, über deren Contour die anhängende Cytoplasmamaschicht hinwegläuft und jene theilweise verwischt. Der flimmernde Saumfaden liegt jedoch nur einfach dem anderen an und geht erst bei der Biegung des letzteren mit in die Spirale ein, wovon man sich durch starke Linsen leicht überzeugen kann, was übrigens auch nothwendig aus dem Nachstehenden gefolgert werden muss.

Wenn man die Spermatosomen mit gewissen Reagentien, wie verdünnter Essigsäure, verdünntem Alkohol behandelt und mit Hämatoxylin färbt, so sieht man sehr schön zwei Fäden, von denen der eine, etwas dünner, geradlinig verläuft, der andere kurze Biegungen macht. Die beiden Fäden trennen sich von einander,
indem sich zuerst der gebogene von dem geradlinigen in der Mitte in einer Curve ablöst, bis sie später wie die Schenkel eines Zirkels aneinander fahren. Taf. III, Fig. 37 und 38.

Diese interessante Erscheinung wurde zuerst von Bütschli bei Clythra octomaculata und anderen Insecten sehr genau beobachtet¹, dann von mir bereits von Phratora vitellinae kurz beschrieben²). Sie stimmt offenbar in ihrem ganzen Wesen mit dem überein, was ich darüber früher³) und un längst⁴) bei den Bußen zu erforschen vermochte und ist dahin zu erklären, dass sich das Cytoplasm in einer besonderen Schicht an den Mittelfaden als schnäleren oder breiteren Saum anlegt und unter gewissen Umständen als zweiter Faden von dem ersten ablöst.

Bei der Bewegung der Samenkörper bleibt der Kopf starr und nimmt nur passiv an derselben Theil; der Faden dreht sich

2) v. la Valette St. George, Ueber die Genese der Samenkörper. Dritte Mittheilung. Archiv f. mikroskop. Anatomie. Bd. X. 1874. p. 503. Taf. XXXV. Fig. 64 u. 65.

um seine Längsachse, bohrend und zuckend, oft in längeren Intervallen, mit dem Kopfe voran, wobei dann die Spitze des letzteren in einem Kreisbogen ausschlägt. Bei sehr lebhaft sich bewegenden Samenkörperrn ging der Wellenschlag etwa vom oberen Drittel des Fadens an einerseits nach dem Kopfende zu, andererseits nach der Fadenspitze; während bei verlangsamer oder stossweiser Bewegung die Undulation stets von der Schwanzspitze zum Kopfe fortschritt. Es wird sich die Sache wohl so verhalten, dass der undulierende Flimmerfaden vom Kopfe gegen das Fadenende zu schwingt, wodurch dann das Spermatozoon sich drehend nach der entgegengesetzten Richtung hin bewegt.

Anhangsweise möchte ich nun noch einige Mittheilungen folgen lassen aus der Spermatogenese einiger anderer Käfer.

Bei Feronia nigra fand ich sehr grosse Spermatozysten mit sehr dicker Cystenhaut vor, deren ich eine auf Taf. IV, Fig. 49 abgebildet habe.

Von Ilybius fenestratus gewann ich sehr instructive Bilder über die erste Entwicklung der Samenschläuche, welche die Theilung der Spermatagonie, von 0,015 mm Grösse, in Spermatozysten und Cystenzellen mit den Cystenkernen zeigten. Taf. IV, Fig. 50—53.

Jüngere und ältere Spermatozysten und das Spermatozoon habe ich Taf. IV, Fig. 54—56 von Ocypus olens abgebildet, dessen Kopf, 0,035 mm lang, unmittelbar in den noch nach 24 Stunden lebhaft schwingenden 0,175 mm langen Faden überging, desgleichen von Astynomus aedilis — Spermatozyste lang 0,175 mm, breit 0,087 mm, Kopf der Samenkörper: 0,017 mm, Faden: 0,095 mm lang, Fig. 57 und 58; Samenkörper von Lema melanopa mit 0,035 mm langem Kopfe und 0,157 langem Doppelfaden und Cassida nebula in Fig. 60 und 61, welche letzteren ungemein lebendig waren, ein Kopfende von 0,031 mm und einen über 0,175 mm langen Faden besassen, mit schmalem Flimmersaum versehen.

Coccinella bipunctata zeigte Samencysten in verschiedener Entwicklung, Fig. 62 und ein Spermatozoon mit 0,043 mm langem Kopfe, welcher dünner als der 0,201 mm lange, lebhaft schlängelnde Faden erschien, dessen Flimmersaum sich übrigens nicht
durch verdünnten Alkohol und Eosin ablösen liess. Das Verhältniss von Samenschläuchen zu den Hodenfollikeln sah ich ganz vortrefflich bei Coccinella septem punctata, Fig. 64. Hier bildeten die Wände der Hodenschläuche vollständige Abtheilungen, in welchen die Samenschläuche eingebettet lagen; mit fortschreitender Entwicklung des Inhaltes der letzteren verschwinden diese Scheidewände.

Eine Samencyste desselben Käfers, deren Inhalt im Begriffe steht, frei zu werden, habe ich in Fig. 65 abgebildet.

Erklärung der Abbildungen auf Tafel I—IV.

Fig. 1—48 sind der Spermatogenese von Phratora vitellinae entnommen.

Untersuchungsmedium: Gentianasern.

Maassstab für Tafel I und II: 1 = 0,00175, Tafel III: 1,5 = 0,00175, in Tafel IV unbestimmt.

Tafel I.

Fig. 1. Theilungsprodukte der Spermatogonie in ihrer Entwicklung zur Spermatocyste.

Fig. 2. Junge Spermatocyste mit Cystenkern.

Fig. 3, 4 und 5. Weiter entwickelte Spermatocysten mit ihren beiden Cystenkernen.

Fig. 6, 7, 8, 9 und 10. Spermatocysten, deren Spermatocyten den Nebenkern in verschiedener Gestalt zeigen, nebst Prophasen der Kerntheilung ihrer Spermatocyten.

Fig. 11. Spermatocyste mit Spermatocyten in der vollendeten Prophase, der Meta- und Anaphase ihrer Mitosen.

Fig. 12. Spermatocyste mit Spermatocyten in der Anaphase der Theilung.

Tafel II.

Fig. 13. Spermatocyste mit Spermatiden erfüllt, deren glänzende Kerne besonders hervortreten.

Fig. 14. Gesprengte Samencyste mit den beiden Cystenkernen und Spermatiden, welche, dem Ende ihrer Entwicklung nahe, den umgewandelten Nebenkern wie den Kern erkennen lassen.

Fig. 15, 16, 17, 18, 19 und 20. Spermatocysten mit fortschreitender Entwicklung der Spermatiden in Spermatosomen.
Spermatologische Beiträge.

Tafel III.

Fig. 21. Spermatocyt mit Spindel und Aequatorialalkörnern, von einem Pole aus gesehen.

Fig. 22. Spermatocyt mit Spindel und länglichen Aequatorialalkörnern.

Fig. 23. Theilung und Auseinanderweichen der Aequatorialkörper.

Fig. 24, 25 und 26. Entwicklung der Spermatiden aus der Samenzelle.

Fig. 27. Spermatide mit Kern und Nebenkern, der aus dem Reste der Spindelfasern hervorgegangen zu sein scheint.

Fig. 28. Spermatide, aus deren Nebenkern der Samenfaden hervorsprosst.

Fig. 29, 30, 31, 32, 33, 34 und 35. Spermatiden in ihrer Umwandlung zum Spermatosom.

Fig. 36. Spermatosom im Ruhezustande mit hervortretendem Flimmersaum.

Fig. 37 und 38. Spermatosomen, mit verdünntem Alkohol behandelt, wodurch der Doppelfaden erkennbar wird.

Fig. 39—48. Samenzellen mit verschiedenen Formen ihres Nebenkernes.

Tafel IV.

Fig. 49. Spermatocyste von Feronia nigra, Cystenhaut halb durchgetrennt.

Fig. 50, 51, 52 und 53. Spermatogonien von Ilybius fenestratus in ihrer Umwandlung zur Spermatocyste.

Fig. 54. Jüngere Samencyste von Ocypus olens.

Fig. 55. Aeltere Spermatocyste desselben Thieres.

Fig. 56. Spermatosom desselben Käfers.

Fig. 57 und 58. Samencysten von Astynomus aedilis.

Fig. 59. Spermatosom desselben Thieres.

Fig. 60. Samenkörper von Lema melanopa.

Fig. 61. Spermatosom von Cassida nebulosa.

Fig. 62. Stück des Hodens von Coccinella bipunctata mit Samencysten in verschiedenen Stadien ihrer Entwicklung.

Fig. 63. Samenkörper desselben Käfers.

Fig. 64. Oberer Theil des Hodens mit Follikelresten und Spermatocyste von Coccinella septem punctata.

Fig. 65. Samencyste im Auflösungsstadium, von demselben Thiere.
Zur Entwicklung der Gehörschnecke.

Von

Dr. Benno Baginsky, Privatdocenten in Berlin.

(Aus dem anatomischen Institut in Berlin.)

Hierzu Tafel V und VI.

Mit vorliegender Arbeit beabsichtigt ich einen Beitrag zur Entwicklung der Gehörschnecke des Säugethiers zu liefern; ich habe, wenn auch immerhin die Morphologie nicht ausser Acht gelassen wurde, meine besondere Aufmerksamkeit den histologischen Verhältnissen gewidmet, um so mehr, als hier noch manche Fragen existiren, welche bislang trotz der Arbeiten unserer besten und erfahrensten Histologen noch nicht vollständig beantwortet sind und der weiteren Aufklärung bedürfen. Die grösste Zahl der die Gehörschnecke behandelnden Arbeiten beschäftigt sich mit den histologischen Verhältnissen des bereits vollständig ausgebildeten Organs und wie vielfach, so ist auch hier, gerade das Studium der Entwicklungsvorgänge vielleicht am ehesten dazu angethan, über den histologischen Bau complicirterer Theile gewisses Licht zu verbreiten. Dazu kommt noch, dass seit den besonders wichtigen und hervorragenden Arbeiten von Kölliker1), Hensen2), Böttcher3), Gottstein4) u. A., über die Histiogenese der Ge-

Zur Entwicklung der Gehörschnecke. 15

Die Gehörorgane des getödteten Thieres resp. der Embryonen wurden frisch in Flemming'schem Chrom-Osmiumsäure-Eissessiggemisch conservirt, in Paraffin geschnitten, die einzelnen Schritte auf dem Deckglass mit 50%/igem Alcohol aufgeklebt und meist mit Safranin gefärbt; kleinere Embryonen, etwa bis zu 1½ cm Grösse, wurden im Ganzen in obiges Gemisch gelegt.

Bemerkens möchte ich noch, dass ich, um die Arbeit nicht übermässig zu vergrössern, mich nur auf die nothwendigsten litterarischen Angaben beschränkt habe, und dies auch nur in so weit, als es zum Verständniss der folgenden Mittheilungen nothwendig ist. Die Litteratur über die Histologie der Gehörschnecke ist bereits so angewachsen, dass es kaum möglich ist, alle vereinzelten Angaben hier genauer zu registiren 3).

Ich betrachte zunächst das Wachsthum der Schnecke.

Die erste Anlage der Gehörschnecke und die morphologischen Verhältnisse desselben beim Kaninchen sind bereits von Hensen 4) und Kölliker 5) genau beschrieben und gestalten sich in ähnlicher Weise, wie sie Böttcher vom Schaf und Hund verzeichnet hat.

5) Entwicklungsgeschichte des Menschen etc. p. 712.
Bei einem 5½ cm grossen Kaninchenembryo sind die Windungen der Schnecke bereits vollständig vorhanden; in der Basalwindung (Retzius) ist bereits die Scalenbildung ganz eingetreten, während sie in der Mittelwindung sich eben andeutet und in der Spitzenwindung noch gar nicht existirt. Eine Differenzierung der das Corti'sche Organ darstellenden Elemente zeigt sich deutlich in der Basalwindung, während in den beiden anderen Windungen nur der grosse und kleine Epithelialwulst sichtbar sind. Mit Recht hat Böttcher hervorgehoben, dass das Wachsthum der Schnecke in zweifacher Richtung erfolgt. Böttcher¹) sagt: „der einmal gebildete Kanal dehnt sich nicht etwa bloss durch Fortentwicklung seiner Spitze aus, sondern streckt sich auf allen Punkten seiner ganzen Länge" und führt für diese Behauptung gewichtige Gründe an, welche ich für voll berechtigt erachte. Die Frage, worin die Bedingungen des Wachsthums liegen, wird von diesem Autor dahin beantwortet, dass „der nächste Grund des Wachsthums in einer Wucherung der epithelialen Wandelemente liegt und dass aller Wahrscheinlichkeit nach eine lebhafte Theilung derselben statt hat. Böttcher ist es nicht gelungen, „vielleicht in Folge der Rapidität des Vorganges“, die Details des Wachsthums zu ergründen und hier tritt meine Untersuchung zunächst ergänzend ein. Betrachtet man nämlich frühe Stadien der Entwicklung, Embryonen von 0,5 bis 2 cm Grösse, so beobachtet man in den Wandelementen des Ductus cochlearis eine sehr reichliche Karyokinese; und bei genauerer Untersuchung zeigt sich, dass der Theilungsvorgang der epithelialen Elemente sich ausschliesslich nur in einer Zellenschicht abspielt, und zwar in derjenigen, welche dem Hohlraum des Ductus cochlearis zunächst liegt, also an der inneren Zellenschicht, welche ich nach dem Vorgange anderer Autoren desshalb als Proliferationsschicht bezeichnen möchte. Die Karyokinesen zeigen sich auf allen Schnitten der diesbezüglichen Embryonen in der ganzen Circumferenz des Schneckenkanals, sowohl an der späteren unteren Wand, welche zum grossen und kleinen Epithelialwulst auswächst, wie auch an der gegenüberliegenden dünneren Wand. Lässt sich aus der ungefähren numerischen Schätzung der in Karyokinese befindlichen Zellen ein einigermaassen sicheres Urtheil über die Zu-

¹) l. e. p. 43 u. ff.
Zur Entwicklung der Gehörschnecke.

17

nahme des Zelleumaterials und über die Art des Wachsthums gewinnen, so dürfte in diesen Stadien das Wachsthum des Ductus cochlearis in seiner Totalität ein ziemlich gleichmässiges sein; ein erhebliches Ueberwiegen der karyokinetischen Zellen lässt sich nämlich nirgends nachweisen, dieselben sind vielmehr in dem ganzen Ductus cochlearis gleich verbreitet; der einzige Unterschied, der sich zeigt, ist, dass die untere Wand erheblich dicker, als die gegenuüberliegende obere erscheint. Es ergibt sich hieraus zugleich die Beantwortung der Frage\(^1\), welche Böttcher offen gelassen hat „ob nämlich mehrere Zellenlagen über einander sich befinden oder ob nur eine einzige die ganze Höhe der unteren Wand des Schneckenkanals einnimmt\(^1\), eine Frage, welche auch Kölliker\(^2\) nicht mit Sicherheit entscheidet. Kölliker sagt, „ich bemerke, dass die Wand an den dickeren, an der ventralen und medialen Seite gelegenen Stellen auch auf feinen Schnitten durch die Lage der Kerne den Eindruck gewährt, als ob dieselben aus mehreren (2—3) Lagen verlängerter Zellen zusammengesetzt sei; nichts desto weniger muss auch hier die Möglichkeit im Auge behalten werden, dass alle Zellen mit ihren Ausläufern beide Flächen erreichen.“ Man kann an gut gelungenen, dünnen Schnitten leicht erkennen, dass an der unteren dickeren Wand des Schneckenkanals mehrere epitheliale Zellenlagen vorhanden sind, deren oberste Schicht sich eben in Karyokinose befindet, während die darunter liegenden Zellen mit ihren Kernen einen derartigen Vorgang nicht erkennen lassen.

Wenn wir die Wachsthumsverhältnisse weiter verfolgen, so finden wir eine sehr bemerkenswerthe Thatsache. Während in den eben bezeichneten Entwicklungsstadien Kerntheilungen sich im gesammten Ductus cochlearis nachweisen lassen zu einer Zeit, in der eine Differenzierung der Elemente noch nicht eingetreten ist, suchen wir bei einem 3 bis 3½ cm grossen Kaninchenembryo, bei dem sich in der Basalwindung der grosse und kleine Epithelialwulst bereits vollständig ausgebildet darstellt, in dieser Windung vergebens nach karyokinetischen Zellen; statt der numerischen Zunahme dagegen sehen wir das bereits vorhandene Material in formativem

1) l. c. p. 46.
2) l. c. p. 713. Kölliker’s Angabe bezieht sich allerdings auf die Zusammensetzung der Wand des gesammten Gehörbläschens.

Wachsthum begriffen, die Zellen an der unteren Wand vergrössert und verlängert, den grossen und kleinen Epithelialwulst darstellen. In der Mittelwindung und der sich weiter ausbildenden Spitzenwindung dagegen sind indess an der bereits angegebenen Zellenschicht Theilungsvorgänge noch deutlich nachweisbar, wenn auch in geringerer Zahl, als in den früheren Stadien. Je mehr indess die Schnecke sich weiter differenzirt, desto mehr verschwinden auch in den letzten beiden Windungen die Karyokinesen unter gleichzeitiger weiterer Ausbildung des grossen und kleinen Epithelialwulstes, so dass bei einem 5 bis 5 1/2 cm grossen Kaninchenembryo im Epithel des Schneckenkanals Karyokinesen nicht mehr aufgefunden werden können). In den Schneckenkanal umgebenden embryonalen Bindegewebe sind indess Kerntheilungsfiguren noch deutlich nachweisbar, soweit in diesem Stadium der Entwicklung, als auch in weiter vorgerückteren.

Es ergiebt sich somit, dass das Wachsthum der Schnecke von der ersten schlankförmigen Anlage bis zur Ausbildung aller Windungen durch Zellvermehrung, die weitere Umgestaltung und Differenzierung dagegen durch Vergrösserung und Umbildung der bereits vorhandenen Elemente stattfindet, und es ergiebt sich weiterhin, dass die Spitze der Schnecke noch wächst, und zwar durch Zunahme der Zahl der Zellen, zu einer Zeit, in welcher die Basalwindung und die Mittelwindung nur Veränderungen formativer Art darbieten 2).

Mit der Ausbildung der Schneckenwindungen geht die Bildung der Scalen Hand in Hand; dieselbe beobachtete ich zuerst beim Kaninchenembryo von 5 bis 5 1/2 cm Grösse; bei einem 3 1/2 cm grossen Embryo ist von derselben noch nichts zu beobachten; sie zeigt sich zuerst an der Schneckenbasis und schreitet

1) Auch in den späteren Stadien habe ich im Epithel des Ductus cochlearis bezw. in den aus dem Epithel hervorgegangenen Elementen des Corti'schen Organs u. s. w. Karyokinesen an keiner Stelle auffinden können, ebenso auch nicht an dem bereits vollständig ausgebildeten Organe des erwachsenen Thieres.

Zur Entwicklung der Gehörschnecke. 19

allmählich nach der Spitze zu fort, so dass sie bei einem 9 cm
grossen Embryo in allen Windungen bereits ganz vorhanden ist.
Was den Vorgang selbst anlangt, so ist derselbe von Kölliker
und Böttcher genauer beschrieben; unter Umwandlung des
embryonalen Bindegewebes in Schleimgewebe und unter Schwund des-
selben vollzieht sich die Hohlaumbildung, wobei ich noch das
Verhalten der Gefässe besonders innerhalb der Scala tympani hervorheben möchte, einen Punkt, der, wie es scheint, bisher nicht
genügend berücksichtigt worden ist. Kölliker und Böttcher
gaben an, dass die Scalenbildung zuerst am Vorhofsabschnitt der
Schnecke, an der späteren Scala vestibuli stattfindet und fast
gleichzeitig auch an der Scala tympani. An den verschiedenen
Durchschnitten der Schnecke eines 5 1/2 cm grossen Kaninchen-
embryo beobachtete ich die Scalenbildung zuerst in der Scala tym-
pani; hier ist der Schmelzungsprozess des Bindegewebes bereits
weit vorgeschritten, während in der Scala vestibuli derselben
Windung der Umwandlungsprozess des Bindegewebes in Schleim-
gewebe sich eben einleitet. In der Scala tympani fällt nun das
Verhalten der Gefässe besonders auf; der Gefässreichthum in der
embryonalen Schnecke ist ausserordentlich gross; man beobachtet
in der Circumferenz der Scala tympani mehrere ziemlich breite
Gefässe, welche auf dem radialen Querschnitt quer getroffen
werden; in der Scala vestibuli sind die Gefässe weniger zahlreich
und erscheinen auf dem Querschnitt auch erheblich dünner. Bei
dem eben erwähnten 5 1/2 cm grossen Embryo beobachtet man nun,
wie die Gefässe der Scala tympani unter dem Schwunde des em-
byronalen Bindegewebes zu cavernösen Hohlräumen zusammen-
fließen, welche zunächst noch der Innenfläche des Schneeken-
kanals anliegen und allmählich unter Verdünnung und Rarefizierung
der Wände fast vollständig zu Grunde gehen. Ähnlich ist der
Vorgang auch in der Scala vestibuli, nur sieht man hier ein
direktes Zusammenfließen und Verschmelzen der Gefässe nur
äusserst selten.

Ich wende mich nun zur Betrachtung der Entwicklungsvo-
gänge an dem Ductus cochlearis und betrachte zunächst die

Aussenwand desselben.

Sie bildet bekanntlich das von Kölliker mit dem Namen
„Ligamentum spirale“ belegte Band. Von besonderer Wichtigkeit

Bei einem 3½ cm grossen Kaninchenembryo besteht die

Zur Entwicklung der Gehörschnecke. 21

äussere Umhüllung des Ductus cochlearis bereits aus 2 Schichten, einer äusseren, mehr lockeren Bindegewebschicht, und einer inneren, dem Ductus cochlearis dicht anliegenden, mehr zellenreichen Bindegewebslage, welche jetzt schon eine gewisse nachbarliche Beziehung zum Schneckenkanal zu erkennen gibt. In beiden Schichten, sowohl der äusseren, wie der inneren, zeigen sich auf dem Querschnitt quer und längs durchschnittene Gefässe, welche indess in der äusseren zahlreicher erscheinen. Der Ductus cochlearis selbst erscheint auf dem Querschnitt fast eiförmig; die innere Bindegewebslage zieht sich zum Theil auch noch auf die obere und äussere Wand des Schneckenkanals hin. In dem nächstfolgenden untersuchten Stadium, einem 5½ cm grossen Kaninchenembryo, ist das Verhalten der äusseren Wand im Wesentlichen noch dasselbe, wie im vorhergehenden Stadium. Es bildet sich das Perichondrium (Periost) aus; dem entsprechend beobachtet man eine der knorpligen Kapsel anliegende dünnere und festere Bindegewebslage; alsdann folgen jene oben näher bezeichneten beiden Bindegewebschichten; die innere Lage hat sich nur noch dichter dem Ductus cochlearis angeschlossen und stellt sich jetzt in Form eines zellenreichen Streifens dar, mit geringer Zwischensubstanz und vereinzelten Karyokinesen. Die Zwischensubstanz erscheint jetzt im Vergleich mit dem vorhergehenden Stadium etwas reducirt und dementsprechend liegen die Zellen noch dichter an einander. Fig. I a stellt die innere Lage dar und man sieht auf dem Schnitte eine Menge Gefässe, welche bis an das Epithel der Ductus cochlearis heranreichen. Der Ductus cochlearis selbst hat an Ausdehnung gewonnen, und erscheint im Querschnitt dementsprechend grösser; in der Basalwindung (Fig. I) ist die Scalierung beinahe vollendet und die Differenzierung der einzelnen Elemente des Corti'schen Organs nachweisbar. Die äussere Wand erscheint, wie es Böttcher vom Schaf beschrieben hat, fast gleichmässig nach aussen convex. Die Epithelien des Ductus cochlearis sind hier kubisch und verhalten sich genau so, wie Böttcher sie von der Katze beschrieben hat. Im Paukenwinkel (Fig. I b) werden die Epithelien höher und cylinderisch; ihre Abgrenzung nach aussen gegen die ihr benachbarte Bindegewebschicht ist eine ganz scharfe.

Bei einem 7 ½ cm grossen Kaninchenembryo erfahren nun die Verhältnisse der Aussenwand in zweifacher Richtung eine Aende-
ruung; sie betrifft einerseits das Epithel des Ductus cochlearis, andererseits die ihr anliegende Bindegewebschicht. Was das Epithel der Außenwand des Ductus cochlearis betrifft, so zeigen sich Veränderungen sowohl in den kubischen Epithelzellen (Fig. IIc) als in den hohen Cylinderzellen (Fig. IIb). Während bisher, abgesehen von der verschiedenen Größe der Zellen, sich Unterschiede in dem sonstigen Verhalten derselben (gegen die Färbung u. s. w.) nicht zeigten, beobachtet man in diesem Stadium, wie die grossen Cylinderzellen sich nach aussen verlängern und Fortsätze aussenden in den sie umgebenen Bindegewebsstreifen, gleichsam, um sich daselbst eine grössere Fixierung zu verschaffen (Fig. IIb und Fig. IIIb). Während dieses Vorganges an den grossen Epithelien, durch den die Zellen an Grösse zunehmen, tritt an den kubischen Epithelzellen ein mehr atrophischer Process zu Tage. Die Zellen, welche vorher deutlich von einander abgegrenzt (Fig. Ic) einen schönen grossen Kern mit Kernkörperchen und reichlichem Protoplasma zeigten, lassen bald nur mit Mühe ihre Umrandung deutlich erkennen; die Zellen werden kleiner und die Zellgrenzen undeutlich; das Protoplasma wird körniger und die Zellen nehmen im Allgemeinen eine mit Safranin viel intensivere Tinction an. Zugleich fängt auch die bisher scharfe Abgrenzung gegen das von aussen deckende Bindegewebe sich zu verwischen an. Die bisher scharfe Umrandung bekommt einen unbestimmten welligen Charakter; die Grenze, wenn auch etwas undeutlich, lässt sich indess immerhin noch erkennen. Die in Frage stehende Bindegewebslage, welche dem Ductus cochlearis innig anliegt, zeigt in so fern eine Umwandlung, als eine Auflockerung derselben jetzt nachweisbar ist (Fig. IIa, Taf. VI). Es rücken die Bindegewebskörperchen mehr aus einander und die Zwischensubstanz erscheint reichlicher und die ganze Lage erheblich verbreitert; hier und da zeigen sich noch Karyokinesen und zahlreiche Blutgefässse, welche bis dicht an das Epithel heranreichen. Durch den eben beschriebenen Vorgang wird die Bildung der Stria vascularis eingeleitet und man kann mit Sicherheit bis jetzt nachweisen, dass die Gefässe nicht dem Epithel, sondern dem Bindegewebe angehören, ebenso, dass sie bis an die Epithelgrenzen heranreichen, aber nicht im Epithel liegen. Den weiteren Vorgang kann man nun an einem 10 cm grossen Kaninchenembryo studiren. Hier beobachtet man, dass das Epithel des Ductus cochlearis noch
Zur Entwicklung der Gehörschnecke.

weiter zusammensintert und dass die Zellen fast nur noch als dunkle Kerne erscheinen (Fig. III c); zugleich zeigt der dem Ductus cochlearis dicht anliegende Bindegewebstreifen einen Verdichtungsprocess, der sich in der Verkämmerung der Zwischensubstanz und dem Aneinanderrücken der geschrumpften und verkleinerten Bindegewebskörperchen kund giebt; hervorzuheben ist noch, dass die hochgradig veränderten Epithelzellen des Ductus cochlearis kurze Fortsätze zu den im Bindegewebe gelegenen Gefässen aussenden, durch welche die Verschmelzung des epithelialen Schneckenkanals mit dem Bindegewebestreifen eine noch innigere wird. Die Gefäss liegen jetzt den so veränderten Epithelien dicht an und betrachtet man die jetzige Form der Stria vascularis, so würde man ohne Kenntniss des Entwicklungsganges in der That zu der Meinung verleitet, dass es sich um ein gefäßhaltiges Epithel handelt, während doch entwicklungs geschichtlich mit Sicherheit die bindegewebige Abkunft derselben sich ergiebt. Damit widerlegt sich die von Retzius vertretene Anschauung; und was die Abgrenzung dieser Schicht gegen das unterliegende Bindegewebe anlangt, so ist sie durchaus nicht so ausserordentlich scharf, wie Schwalbe es hervorhebt; an einzelnen Stellen sieht man mehr oder weniger allmäßliche Uebergänge zu dem unterliegenden Bindegewebe (Fig. III a).

Was nun die weiteren Verhältnisse der Aussenwand betrifft, so habe ich bereits der durch lange Fortsätze sich auszeichnenden Zellen des Schneckenkanals Erwähnung gethan; dieselben befinden sich in der Nähe des Paukenwinkels (Reichert) und ihre Fortsätze schieben sich verzweigt in das benachbarte Bindegewebe ein; bei dem 7 1/2 cm grossen Kaninchenembryo sind die Fortsätze noch sehr kurz; deutlicher erscheinen sie in den folgenden Stadien (Fig. III b); hier kann man sie ziemlich weit in das Bindegewebe hinein verfolgen; über ihren Verbleib indess vermag ich keine Auskunft zu geben, namentlich ist es mir nicht gelungen, trotz aller Mühe, einen Zusammenhang der Fortsätze mit Bindegewebskörperchen aufzufinden.

In der Betrachtung folgt nun weiter

Die Entwicklung des grossen und kleinen Epithelialwulstes.

Ueber die morphologische Entwicklung habe ich den Angaben von Böttcher kaum etwas hinzuzufügen; der grosse epitheliale Wulst füllt den ganzen Sulcus spiralis internus aus und an ihn
schiessst sich nach aussen an der kleine epitheliale Wulst, aus dem sich das Corti'sche Organ entwickelt. Die erste Ausbildung dieser Epithelialwülste beobachtete ich, wie bereits angegeben, in der Basalwindung eines $3^{1/2}$ cm grossen Kaninchenembryo.

Betrachten wir zunächst den grossen Epithelialwulst, so besteht derselbe, wie Böttcher dies bereits angiebt und was ich bestätigen kann, aus einer einschichtigen Zellenlage. Die Zellen sind spindelförmig, langgestreckt, an beiden Enden, sowohl dem oberen als dem unteren, sich verschmälern; die Zellkerne sind von ovaler Gestalt und liegen nur in der mittleren und unteren Partie des Wulstes, während sie im oberen Drittel fehlen. Ganz besonders überzeugend für die einschichtige Lage sind ganz dünne Schlitze, auf denen man die einzelnen Zellen von der Basis bis zur Spitze genau übersehen kann. Gehen wir auf die ursprüngliche Anlage zurück, so sehen wir, dass da, wo jetzt nur eine einschichtige Zellenreihe sich befindet, früher mehrere Zellenlagen vorhanden waren, deren oberste in Karyokinese sich befand und es ist der Vorgang unzweifelhaft nur so zu erklären, dass bei der Grössen- und Breitenzunahme der Schnecke und des Schneckenkanals die Zellen, welche früher zum Theil nebem, zum Theil über einander lagen, jetzt nur neben einander zu liegen kommen und entsprechend der Höhenzunahme der Schnecke nun auch der Länge nach auswachsen. Den Zellen aufliegend erscheint die Membrana tectoria als eine radiär gestreifte Membran und man beobachtet besonders da, wo durch Zufall die Membran von den Zellen losgelöst erscheint, an dem oberen etwas zugespitzten Ende der Zellen kleine punktschmierige Riffe, an denen noch kleine abgerissene Fäden, der Membrana tectoria angehörig, und, wie es scheint, dem Zellprotoplasma entstammend, sichtbar sind (Fig. I d). Gegen die basalen Enden der Zellen und zwischen dieselben senden die der tympanalen Belegschicht angehörrigen Bindegewebskörpchen feine Fortsätze aus. Ueber das weitere Verhalten des grossen Epithelialwulstes hat bereits Hensen genaue Beobachtungen angestellt und diesbezügliche Mittheilungen gemacht, denen sich diejenigen von Böttcher anschliessen; für das Kaninchen kann ich eine Bestätigung der bisherigen Ansichten erbringen, ohne in der Lage zu sein, hier etwas thatsächlich Neues hinzuffügen zu können; auch mir ist es nicht gelungen, den Rückbildungsmodus, welcher am grossen Wulst in den weite-
Zur Entwicklung der Gehörschnecke.

Wichtiger, als der grosse Epithelialwulst, ist der kleine, aus dem sich das Corti'sche Organ entwickelt; und hier gibt es noch eine Reihe von Punkten, welche der Aufklärung bedürftig sind; ganz besonders erscheint zunächst die Entwicklung der Stäbchen oder Bogenfasern noch nicht so klar dargestellt, als es wünschenswerth wäre. Kölliker und mit ihm Hensen und Middendorp leiten die Bogenfasern aus den beiden ersten Zellen des kleinen Epithelialwulstes ab, während Böttcher auf Grund seiner Untersuchung die Ansicht vertritt, dass beide Stäbchen aus einer einzigen Zelle entstehen. Die Bedenken gegen die von Böttcher aufgestellte Behauptung hat Hensen 1) bereits hervorgehoben und ich habe zunächst diese Frage zu erledigen versucht. Auf Grund meiner Untersuchungen muss ich die Böttcher'schen Beobachtungen für irrtümlich erklären. Der Vorgang gestaltet sich folgendermassen. Während noch bei einem $\frac{3}{2}$ cm grossen Kaninchenembryo eine Differenzirung im kleinen Epithelialwulst nicht zu sehen ist, treten bei einem $\frac{5}{2}$ cm grossen Embryo folgende Veränderungen in demselben zu Tage. Man beobachtet zunächst (Fig. I 1) hart an der Grenze des grossen und kleinen Epithelialwulstes eine eigen-thümliche flaschenförmige Zelle, welche die innere Hörzelle darstellt; hieran schliessen sich nach Aussen zwei Zellen, welche die ganze Höhe des kleinen Wulstes einnehmen und welche sich zu der inneren und äusseren Bogenfaser oder den Pfeilern, dem inneren und äusseren entwickeln (Fig. I 2 und 3); es folgen alsdann 3 weitere Zellen, die äusseren Hörzellen 4, 5, 6, und unter ihnen liegend noch 3 Kerne, welche den Deiters'schen Zellen angehören; weiter nach Aussen folgt dann das kubische Epithel, welches sich zu den Hensen'schen Stützzellen entwickelt.

Es zeigen sich somit, wie dies die genannten Autoren ausser Böttcher angeben, bei der ersten Differenzirung 2 Anlagen für die beiden Bogenfasern; nur sind es nicht, wie Kölliker meint, die beiden ersten Zellen des kleinen Epithelialwulstes, sondern die zweite und dritte Zelle desselben; die erste Zelle wird, wie ich Böttcher zustimmen kann, zur inneren Hörzelle. Gegen die von

Böttcher vertretene Anschauung, dass beide Bogenfasern aus einer Zelle durch Theilung entstehen, spricht auch noch die Thatsache, dass eine Theilung der vermeintlichen Zelle durch Karyokinese niemals nachweisbar ist.

Betrachten wir die weitere Entwicklung der Bogenfasern etwas genauer, so ergeben sich folgende Verhältnisse. Zunächst muss ich im Allgemeinen bemerken, dass, ob'schon später die äussere Pfeilerzelle grösser ist, als die innere, in den früheren Entwicklungsstadien gerade das umgekehrte Verhälttniss vorwaltet; hier erscheint die innere der äusseren in der Entwicklung stets voran. Uebrigens hat auch Böttcher\(^1\) dies schon beobachtet, indem er sagt: „Die innere Bogenfaser ist anfangs länger, als die äussere, dann werden sie einander gleich, schliesslich aber überwiegt letztere. Ich finde die innere nicht nur länger, als die äussere, sondern auch erheblich breiter und das ist auch wahrscheinlich der Grund, warum Böttcher bei der Deutung in einen Irrthum verfallen ist. Betrachtet man nämlich nur einen Schnitt, so kann es vorkommen, dass man auf demselben nur die innere Bogenfaserzelle getroffen hat, während die äussere ganz fehlt. Hier hilft allein nur eine Serienschnittrcife und der Vergleich aller Schnitte, und da überzeugt man sich mit Leichtigkeit, dass wir es in der That mit zwei Zellen zu thun haben; ganz abgesehen davon, dass auf verschiedenen Schnitten gelegentlich beide Zellen getroffen und dem Auge sichtbar werden, bieten auch die einzelnen Schnitte bezüglich dieses Punktes verschiedene Bilder dar; einmal erscheint nur die innere Pfeilerzelle allein in ihrer vollen Erscheinung und es fehlt die äussere Pfeilerzelle ganz, das andere Mal sieht man nur einen Theil der inneren Pfeilerzelle und entweder die ganze äussere Pfeilerzelle oder auch nur einen Theil derselben, vielleicht den Kern u. s. f.

Bei dem 5½ cm grossen Embryo erscheinen nun die beiden Pfeilerzellen langgestreckt, cylindrisch, nach oben etwas spitz abgerundet, und sie nehmen, indem sie gegen einander convergent stehen, die ganze Höhe des kleinen Epithelialwulstes ein. Das Protoplasma, besonders der inneren Zelle, ist äusserst zart und fein granulirt\(^2\). Die Kerne liegen in beiden ziemlich basal

\(^1\) l. c. p. 87.

\(^2\) In Fig. I 2 u. 3 sind die inneren Pfeilerzellen auf dem Schnitte ganz getroffen, während von der äusseren Pfeilerzelle nur ein Theil zu sehen ist.
Zur Entwicklung der Gehörschnecke. 27

und sind rundlich oval. Bei einem 7 1/2 cm grossen Embryo haben sich die Verhältnisse etwas verändert; die Zellen erscheinen etwas kürzer und breiter und namentlich die innere Zelle und, was besonders an dieser auffällt, ist eine streifige Zeichnung des Protoplasmas; man sieht namentlich bei stärkerer Vergrösserung im Protoplasma ganz feine Streifen, welche in der Richtung von oben nach unten herunterziehen und beinahe bis an den Kern reichen. Bemerkt sei, dass die streifige Umwandlung des Protoplasmas an der inneren Zelle früher nachweisbar ist, als an der äusseren, Fig. V 2 und 3. In der weiteren Entwicklung, bei einem 8 1/2 bis 9 cm grossen Embryo (Fig. VI), sehen wir nun, dass die Zellen sich vergrössern, die Zellkerne in gleicher Weise an Grösse zunehmen und die Streifung des Protoplasmas noch deutlicher wird; während bisher die Zellen dicht an einander lagen, sieht man in diesem Stadium dieselben an der Basis aus einander gerückt. Es scheint, als ob für die letztere Erscheinung zwei Ursachen in Frage kämen; einmal die Verlängerung der Zellen im Verein mit einer erheblichen Breitenzunahme der Membrana basilaris und andererseits die Vergrösserung der Zellkerne selbst. Er wäre denkbar, dass durch den Druck, welchen die Zellkerne gegen einander ausüben, die Pfeiler zum Theil direct aus einander gedrückt werden; und für die Richtigkeit dieser Anschauung scheinen namentlich Bilder zu sprechen, welche ich wiederholt zu sehen Gelegenheit hatte, in denen die stark vergrösserten Kerne dicht an einander lagen. Die weitere Umwandlung der Pfeilerzellen kann man nun an einem 13 cm grossen Embryo (Fig. VII) sehen; hier zeigen sich die Pfeiler in ihrer fast vollständigen Ausbildung; die Pfeilerzellen sind an ihrer Basis noch weiter aus einander gerückt und das Protoplasma hat sich noch weiter umgewandelt; die innere Zelle zeigt an ihrer medialen, die äussere an ihrer lateralen Seite ein streifiges Aussehen, während noch an der Basis und an der lateralen Seite der inneren Zelle und an der medialen der äussern Reste des Protoplasmas vorhanden sind. Der innere Pfeiler erscheint noch erheblich länger, als der äussere und letzterer breiter als ersterer. Die Zellkerne liegen nach wie vor basal und bleiben schliesslich als Bodenzellen zurück. Die Angabe von Böttcher 1), wonach in der inneren Bodenzelle öfters 2 Kerne sichtbar sind,

1) l. c. p. 84.

Bei dem bereits erwähnten 5½ cm grossen Embryo zeigt sich die innere Hörzelle als cylindrische Zelle mit breitem abgerundetem Ende, welche nicht, wie Böttcher angiebt, die ganze Höhe des Wulstes einnimmt, sondern nur einen Theil desselben (Fig. I 1). und zwar den oberen. Bereits in diesem frühen Stadium unter-

1) Hensen l. c. p. 497 u. ff.
2) l. c. p. 133.
scheidet sie sich von den äusseren Hörzellen dadurch, dass ihre Form eine andere ist und dass ihr Protoplasma viel körniger erscheint und sich mit Safranin viel dunkler färbt; der Kern ist gross, rund und stark granulirt. Uebrigens findet auch Retzius\(^1\) dieselben Merkmale an der inneren Hörzelle (Haarzelle) des ausgebildeten Organs. Man beobachtet jetzt schon an ihr eine ovale obere Endscheibe (Retzius) mit deutlichen Haaren. Der Zwischenraum zwischen dem abgerundeten Ende und dem basalen Theile des Wulstes wird erfüllt von mehreren Zellkernen, zu Zellen augscheinlich gehörig, deren durchschnittene Fortsätze medial und zum Theil lateral von der inneren Hörzelle erscheinen. Ganz besonders bemerkenswerth ist das Verhalten zweier dicht unter der inneren Hörzelle gelegenen Zellen in dem nächstfolgenden von mir untersuchten Stadium, einem 7½ cm grossen Embryo (Fig. II und Fig. Vf). Hier glaubt man bei oberflächlicher Betrachtung in der That Bilder zu erhalten, wie sie Böttcher beschrieben hat. Bei genauerer Untersuchung indess (Leitz ½ Ocular III) überzeugt man sich, dass diese Zellen mit den inneren Hörzellen gar keinen Zusammenhang haben, dass vielmehr die innere ihren Fortsatz medial, die äussere lateral von der inneren Hörzelle nach oben gegen die obere Begrenzung des grossen bezw. kleinen Epithelialwulstes sendet. Und ganz besonders auffallend ist das Verhalten dieser lateraI von der inneren Hörzelle gelegenen Zelle; sie zeigt nämlich in allen weiteren Entwicklungsstadien das nämliche Verhalten, wie wir es an den Deiters'schen Zellen sehen, so dass wir sie als eine dentselben homologe betrachten können und sie aus den von Retzius und Schwalbe\(^2\) angegebenen inneren Stützzellen noch besonders hervorheben müssen. Was die weitere Entwicklung der inneren Hörzellen anlangt, so wäre in den weiteren Stadien nur noch die Vergrösserung derselben zu bemerken; einen basalen Fortsatz habe ich an ihr niemals beobachten können, womit indess die Möglichkeit der Existenz eines solchen nicht ausgeschlossen ist.

Was nun weiter die äusseren Hörzellen anlangt, so habe ich ihre erste Differenzirung, wie bereits angegeben, in der Basalwindung des 5½ cm grossen Embryo gesehen; auch sie nehmen

1) I. c. p. 133.
2) I. c. p. 369.
Benno Baginsky:
nicht die ganze Höhe des kleinen Epithelialwulstes ein, sondern unter ihnen liegen noch die Deiters'schen Zellen und vereinzelte Kerne, welche wahrscheinlich tiefer liegenden Schichten angehören. Sie stellen cylindrische Zellen dar (Fig. I 4, 5, 6), mit einem feinkörnigen Protoplasma und einem ovalen Kern; sie unterscheiden sich, wie bereits angegeben, von den inneren Hörzellen durch ihr Aussehen und namentlich durch geringere Tingierbarkeit mittels Safranin; ich fand in allen Schnitten dieses Stadiums die Zellen unten abgerundet, einen basalen Fortsatz konnte ich nicht beobachten. Wie bereits Böttcher hervorgehoben hat, stehen sie zunächst steil mit ihrer Längsaxe gegen die Basilarmembran gerichtet, ein wenig nach Aussen, und in den folgenden Stadien wird ihre Stellung eine allmählich schrägere (Fig. II und Fig. V, VI). An diesen Zellen haben viele Autoren einen dünnen Fortsatz beobachtet, welcher sich bis an die Basilarmembran erstreckt. Retzius dagegen fand, dass diese Zellen niemals wirklich Fortsätze zu den Nachbarzellen aussenden und nie zugespitzt nach unten hin in einen langen Faden auslaufen; "das, was man dafür gehalten hat, gehört den angrenzenden Deiters'schen Zellen an."

Fig. VII lässt indess Zweifel aufkommen, ob die von Retzius vertretene Ansicht richtig ist. Lange Zeit habe ich mich der Ansicht von Retzius anschliessen zu müssen geglaubt, zumal ich, wie bereits angegeben, einen basalen Fortsatz an den äusseren Hörzellen nicht habe auffinden können; an einzelnen Schnitten indess ist es mir gelungen, die basalen Fortsätze zu sehen und mich von der sicheren Existenz derselben zu überzeugen; es hängt eben ganz und gar von der Schnittrichtung ab, ob man die Fortsätze der Länge nach trifft und sie so zur Darstellung bringt. In Fig. VII sieht man deutlich, wie die Fortsätze direct von den Hörzellen ausgehen und der Membrana basilaris zustreben; mit starker Vergrösserung kann man mit Sicherheit constatiren, dass diese Fortsätze nicht den angrenzenden Deiters'schen Zellen angehören.

Betreff der Entwicklung der Deiters'schen Zellen habe ich den Angaben Böttcher's nichts Wesentliches hinzuzufügen; ich beobachtete die erste Differenzierung bei dem 5 1/2 cm grossen Kaninchenembryo Fig. 17; hier sieht man neben der äusseren Pfeilerzelle, lateral von ihr, 3 länglich ovale Kerne; dieselben sind

1) l. c. p. 128.
Zur Entwicklung der Gehörschnecke.

kleiner, als die Kerne der Pfeilerzellen und liegen etwas höher, als letztere. In der weiteren Entwicklung Fig. II 7 liegen die Kerne der Grundmembran auf und haben ihre Stellung entsprechend der schrägeren Richtung der äusseren Hörzellen auch etwas verändert. Vom Protoplasma ist weder in diesem Stadium, noch in den vorhergehenden eine deutliche Ansicht zu gewinnen. Bei dem 13 cm grossen Embryo Fig. VII erscheinen dagegen die Zellen deutlich mit ihrem Kern; dieselben zeigen ein abgerundetes Ende, in dem der grosse granulirte Kern liegt und sie liegen fast unmittelbar der Basilarmembran auf; man beobachtet hier an ihnen Fortsätze, welche sich nach oben zwischen den äusseren Hörzellen zur Membrana reticularis begeben. Die so schwierige und viel dissetirte Frage, wie sich die Deiters'schen Zellen zu den äusseren Hörzellen verhalten, ob sie mit einander innig verbunden sind und mit ihr eine Zwilingszelle bilden (Gottstein, Waldeyer), oder ob sie mit einander nur nachbarlich zusammenhängen, eine Frage, welche von Retzius wieder untersucht worden ist, habe ich an meinen Schnittpräparaten nicht erledigen können; Retzius giebt im Uebrigen an, dass es ihm gelungen ist, in einer Reihe von Präparaten, welche mit Osmium-Goldchlorid behandelt waren, die beiden Zellenarten von einander zu trennen, so dass sie nach den Erfahrungen dieses ausgezeichneten Forschers im Anschluss an die früheren Untersuchungen Böttcher's als zwei getrennte Zellenarten aufzufassen sind. Die Bilder, welche ich von den frühen Entwicklungsformen gewonnen habe und welche beide Zellenarten, schon in diesen Stadien der Entwicklung, als isolirte Bildungen erscheinen lassen, würden mit dieser Auffassung in guter Ueber- einstimmung sich befinden.

Ich wende mich nun zur Membrana basilaris und betrachte die Entwicklung derselben. Wir müssen hier zurückgreifen auf den Vorgang bei der Scalenbildung und speciell der Scala tympani. Wie bereits Böttcher nachgewiesen hat, erhält sich bei der Bildung der Scalen an der unteren Wand des Schneckenkanals ein Theil des embryonalen Bindegewebes, welcher in einer mässig breiten Schicht dieser Wand anliegt. In ihr ist das Vas spirale gelegen, welches an der tympanalen Wand von der Schneckenbasis bis zur Spitze verläuft. In Fig. I und II (V. sp.) erkennt man den Querschnitt dieses Gefässes, welcher unter dem kleinen Epithelialwulst gelegen, fast in der ganzen Breite desselben
sich ausdehnt. Dieser von diesem Gefäße laterale, der tympanalen Wand des Ductus cochlearis dicht anliegende Bindegewebsstreifen, in so weit er bis fast zum Paukenwinkel sich erstreckt, ist es, welcher bei der Bildung der Membrana basilaris in Betracht kommt und es stellen sich die Entwicklungsverhältnisse in folgender Weise dar. Bei dem 5\(\frac{1}{2}\) cm grossen Embryo kann man die ersten Entwicklungsphasen der Membrana basilaris genau beobachten. Während in der Spitzenwindung die tympanale Bindegewebschicht (Belegschicht nach Retzius) dem Ductus cochlearis in Form eines Bindegewebsstreifens anliegt, sehen wir in der Mittelwindung die erste Differenzierung der Membrana basilaris und in der Basalwindung das weitere Fortschreiten der Entwicklung. Es zeigt sich, dass die der tympanalen Wand des Ductus cochlearis dicht anliegende Schicht des Bindegewebes sich in Form einer langgestreckten Mondsichel von dem darunter liegenden Bindegewebsschicht auseinander. Bei genauerer Betrachtung sehen wir, dass die Zellkerne hier viel dichter an einander rücken, und dass sie sich mit ihrer Längsaxe parallel der epithelialen Grenzschicht stellen, also radiär, während das darunter liegende Bindegewebe den früheren lockeren Charakter behält, und ihre Kerne, wie dies Böttcher bereits richtig beobachtet hat, der Längsaxe des Schneckenkanals entsprechend gestellt sind. Die Grenze beider Schichten charakterisiert sich genau in Form einer ziemlich scharfen Linie, welche die Sichel nach unten gegen das Bindegewebe abgrenzt. In der unteren Windung derselben Schnecke sehen wir nun die weitere Umgestaltung. Während in der Mittelwindung die Kerne innerhalb des sichelförmigen Raumes sehr zahlreich sind, finden wir hier dieselben an Menge verringert; statt ihrer constatiren wir ein feines Gewebe, welches in der Längsrichtung der Sichel vom Vas spirale bis zum Paukenwinkel feine zarte Streifen erkennen lässt, welche sich an einzelnen Stellen als lange Zellfortsätze darstellen. Dabei hat die Höhe der Sichel sich verringert und die untere Begrenzung derselben erscheint mehr stumpfwinklig, als abgerundet (Fig. IX g). Die weitere Entwicklung können wir dann bei dem 7\(\frac{1}{2}\) cm grossen Embryo beobachten (Fig. X g). Die Zahl der Kerne hat noch weiter abgenommen und man erkennt jetzt noch deutlicher die ausgeprägte Streifung innerhalb des sichelförmigen Raumes, welcher an Höhe noch weiter verloren, dabei aber an Breite gewonnen hat, augen-
scheinlich in Folge der Verbreiterung der tympanalen Wand. Die Zellkerne liegen langgestreckt der Wandung des sichelförmigen Raumes dicht an. Die darunter liegende Bindegewebslage hat ihren früheren Charakter nur in so weit geändert, als das bisher lockere Bindegewebe sich etwas verdichtet hat und die Zellkerne etwas mehr an einander gerückt sind, unterscheidet sich aber ganz erheblich von der zur Membrana basilaris sich entwickelnden Schicht durch die gesammte Anordnung der Zellen, welche den früheren Charakter ziemlich unverändert beibehalten haben. Die weitere Differenzierung sehen wir dann in Fig. XI (Basalwindung eines 10 cm grossen Embryo); die Membrana basilaris erscheint hier fast schon in ihrer vollständigen Entwicklung und wenn wir dieses Stadium mit dem vorhergehenden vergleichen, so stellen sich die Verhältnisse folgendermassen dar. Der sichelförmige Raum hat an Breite zugleich mit der tympanalen Wand zugenommen, die Höhe desselben hat sich etwas, aber nur wenig verkürzt. Wir beobachten innerhalb desselben die bereits beschriebenen Zellkerne, der Länge nach gestreckt, der epithelialen Lage der tympanalen Wand ziemlich dicht anliegend und die ganze Schicht fast homogen; nur einzelne feine Fasern sind bei starker Vergrösserung hier zu beobachten. An der unteren Grenze der Sichel dagegen beobachten wir eine ziemlich stark ausgesprochene streifige Schicht, welche sich nach Aussen gegen den Paukenwinkel zu, da, wo die Membrana basilaris an das Ligament spirale herantritt, in eine mehr homogene, ziemlich dicke Schicht fortsetzt.

Wir haben also in diesem Stadium an der Basilararmembran 3 Schichten oder, wie Schwalbe es will, 4 Schichten zu unterscheiden (Fig. XI). 1) Das cuticulare Häutchen als basale Grenzschicht des Epithels des Ductus cochlearis p, 2) die homogene Schicht mit eingebetteten Kernen q, 3) die Basilarisfasern r und 4) die basale Lage dieser Fasern als untere sehr schmale homogene Lage s.

In der tympanalen Belegschicht hat sich der bereits eingeleitete Verdichtungsprocess noch weiter vollzogen und die Zellkerne liegen dicht aneinander, indem die Zwischensubstanz erheblich reduziert ist.

Ich habe die Verhältnisse weiter verfolgt bei einem 13 cm grossen Embryo und bei einem 2 Tage alten Kaninchen und fand keine wesentlichen Veränderungen, so dass die etwaigen weiteren
Umgestaltungen und Differenzierungen augenscheinlich erst später eintreten.

Betrachten wir nun die Entwicklungsvorgänge an der Membrana basilaris, so ist auffallend, dass dieselben sich nur an denjenigen Partien zeigen, welche nach Aussen vom Vas spirale liegen, während medianwärts von denselben diesbezügliche Umgestaltungen nicht nachweisbar sind; es drängt sich deshalb die Frage mit Recht auf, ob wir vom entwicklungs geschichtlichen Standpunkte aus denjenigen Theil der Basilarmembran, welchen man bisher als die innere Zone (Habenula tecta) aufgefasst und beschrieben hat, noch fernerhin zur Membrana basilaris im strengen Sinne des Wortes rechnen dürfen. Die bisher beschriebenen Umwandlungen von der ersten Anlage bis zur fast vollständigen Ausbildung betreffen nur die äussere Zone (Habenula pectinata Corti), welche von der Basis des äusseren Pfeilers bis zum Ligamentum spirale reicht und sich mit demselben verbindet.

1) l. c. p. 115 und Virchow's Archiv, Bd. XVII, p. 259 und 262.
3) l. c. p. 116.
keine Veränderungen zeigt, welche die Entstehung des Faserstratums aus demselben nachweisen lassen. Dass die Fasern der Corti'schen Bögen in die der Basilarmembran nicht übergehen, ist neuerdings von Lavdowsky genügend hervorgehoben worden und giebt auch die embryologische Untersuchung für die von Böttcher aufgestellte gegenteilige Behauptung keine Anhaltspunkte. Die Frage, wie sich die Fasern der Basilarmembran entwickeln, ob durch directe Umwandlung der Bindegewebszellen oder in anderer Weise, möchte ich bei der fundamentalen Wichtigkeit derselben nicht entscheiden wollen.

Ich habe noch einige Worte hinzuzufügen über die Entwicklung der Membrana tectoria. In ihrer ersten Anlage habe ich sie beim Kaninchen nicht beobachten können; bei einem Schweineembryo von etwa 2 cm Grösse stellte sich diese Bildung dar, wie dies bereits Böttcher beschrieben hat, als ein zartes, dünnes, feinstreifiges Häutchen, welches dem Epithel der unteren Wand des Schneckenkanals anlag; eine Differenzierung des grossen und kleinen Epithelialwulstes hatte noch nicht stattgefunden. Beim Kaninchen beobachtete ich diese Membran zuerst bei dem 5½ cm grossen Embryo Fig. I, M. t. Sie entspringt hier dicht am A.bgang der Membrana Reissneri, zuerst äusserst dünn und zart, allmählich an Dicke zunehmend. Sie liegt auf der Habenula sulcata bezw. dem zu derselben sich ausbildenden Epithel dicht auf, bedeckt die Zellen des grossen Epithelialwulstes und reicht hinüber über die bereits differenzirten Zellen des kleinen Epithelialwulstes. In Fig. I d erscheint die Membran an einer Stelle etwas abgehoben und hier sieht man an den oberen Zellfortsätzen kleine punktförmige Riffe und dünne haarförmige Fortsätze, welche gleichsam aus den Zellen hervortreten. Bei dem 7½ cm grossen Embryo haben sich die Verhältnisse wenig verändert; bei dem 13 cm grossen Kaninchenembryo Fig. IV M. t. sieht man nun, wie die Membran, ziemlich stark streifig, sich erheblich verdickt hat, den Suleus spiralis internus überbrückt und bis über die äusseren Haarzellen reicht. Hier hört die Membran auf. Die grösste Ver dickung zeigt hier die Membran am grossen Epithelialwulst, welcher bereits im Schwinden begriffen ist. In allen gelungenen Präparaten fand ich, wie dies auch von Lavdowsky

1) l. c. p. 501.

Zum Schluss bemerke ich, dass die Zeichnungen möglichst naturgetreu nach Präparaten angefertigt sind und alles Schematische vermieden ist.

Erklärung der Abbildungen auf Tafel V und VI.

Fig. I. Durchschnitt durch den Ductus cochlearis (untere Schneckenwindung) eines 5 1/2 cm grossen Kaninchenembryo. Vergrösserung Leitz Ocul. III Object 7 bei ausgezogenem Tubus. 1) innere Hörzelle, 2) innere Pfeilerzelle, 3) äussere Pfeilerzelle, 4) 5) 6) die drei äusseren Haarzellen, 7) Deiters'sche Zellen. V. sp. Vas spirale, M. t. Membrana tectoria, e. b. c Epithel des Ductus cochlearis, a bindegewebige Aussenwand des Ductus cochlearis, d Stelle, an der die Membrana tectoria vom Epithel abgehoben ist.

Fig. II. Durchschnitt durch den Ductus cochlearis (untere Schneckenwindung) Taf. VI. eines 7 1/2 cm grossen Kaninchenembryo; dieselbe Vergrösserung wie in Fig. I. M. R. Membrana Reisneri, f die beiden unter der inneren Hörzelle gelegenen Zellen. Die übrigen Bezeichnungen wie in Fig. I.

Fig. III. Schnitt durch die Stria vascularis eines 10 cm grossen Kaninchenembryo; dieselbe Vergrösserung.

Fig. IV. Durchschnitt durch die untere Schneckenwindung (tympanale und Aussenwand nicht mit gezeichnet) eines 13 cm langen Kaninchenembryo; Vergrösserung Leitz IV Ocul. I bei ausgezogenem Tubus, stellt besonders die Verhältnisse der Membrana tectoria dar und die Ausbildung des Sulcus spiralis internus.

Fig. V. VI. und VII stellen die Entwicklungsverhältnisse der Pfeiler-, der inneren und äusseren Haarzellen und der Deiters'schen Zellen dar. Fig. V untere Windung eines 7 1/2 cm grossen Embryo.
Zur Entwicklung der Gehörschnecke.

Fig. VI Mittelwindung eines 9 cm grossen Embryo.
Fig. VII untere Windung eines 18 cm grossen Embryo.

In Fig. VII sind besonders deutlich die von den äusseren Haarzellen nach der Basalmembran abgehenden Fortsätze zu sehen, und in gleicher Weise die Fortsätze, welche von den Deiters'schen Zellen nach der Membrana reticularis gehen. Bezeichnung wie in Fig. I.

Fig. VIII. IX. X und XI stellen die Entwicklung der Membrana basilaris dar. Vergrösserung Leitz Ocul. III Object 7.

Fig. VIII. Mittelwindung eines 5½ cm grossen Kaninchenembryo. g sichelförmiger Raum als erste Differenzierung der Basilarmembran.
Fig. IX. Basalwindung derselben Schnecke und weitere Differenzierung der Basilarmembran.
Fig. X. Basalwindung eines 7½ cm grossen Kaninchenembryo.
Fig. XI. Basalwindung eines 10 cm grossen Kaninchenembryo. Bezeichnung wie in Fig. VIII. p cuticulares Hāutchen, q homogene Schicht mit Kernen, r Fasern der Membrana basilaris, s basale Lage dieser Fasern.

Zur Kenntniss der Insektenhaut.

Von

Charles Sedgwick Minot.

(Zweite Mittheilung 1) aus dem Laboratory of Histology and Embryology of the Harvard Medical School, Boston, Mass.)

Hierzu Tafel VII.

Nachstehender Aufsatz beschäftigt sich mit einigen Angaben über den Bau der äusseren Cuticula (Epidermis der Entomologen), speciell der Raupen. Bei vielen Insektenlarven ist ein Theil der Färbung durch Pigmentirung der Cuticula bedingt. Das Pigment kann durch die ganze Cuticula reichen, aber ist doch gewöhnlich

auf die alleräussereste Schicht beschränkt, und findet sich dort in Verbindung mit eigenthümlichen Modellirungen der Oberfläche in mikroskopischen Figuren angeordnet, die nicht nur durch ihre Zierlichkeit, sondern auch durch ihre, für jede Species charakteristischen Variationen unser Interesse beanspruchen. Ich gebe zunächst die Beschreibung der einzelnen von mir untersuchten Species und lasse darauf eine kurze Vergleichung der Beobachtungen folgen.

Wir wollen mit Danais archippus, einer bei uns sehr häufigen Schmetterlingsart, anfangen. Die dunkelbraunen Querstreifen der erwachsenen Larve sind durch Färbung der Cuticula bedingt. Die Farbe ist aber keineswegs gleichmässig vertheilt, sondern auf kleine Feldern beschränkt (Fig. 1), die sehr scharf begrenzt sind und dicht beisammen liegen. Jedes Feldchen ist in der Mitte erhoben, wodurch das Ganze ein gebirgähnliches Aussehen gewinnt. Dieser Eindruck wird noch dadurch verstärkt, dass von der Spitze kleine Grate, die durch entsprechende Vertiefungen von einander getrennt sind, sich bis zur Basis des Feldes hinabsenken. Von oben betrachtet, hat jedes Feld einen Zackigen Umriss, in dessen Vorsprüngen man die Enden der dort auslaufenden Grate erkennt. Die kleinen zwischen den Feldern zu sehenden Räume sind vollkommen pigmentfrei. Aehnliche Erhebungen sind zwischen den dunklen Streifen auch zu erkennen, doch sind diese kaum gefärbt und daher weniger deutlich. Ein Querschnitt der Cuticula (Fig. 2) lehrt uns, dass das Pigment auf eine sehr dünne oberflächliche Schicht beschränkt ist, die die von der ungefärbten Hauptschicht gebildeten Erhebungen überzieht. Die Abbildung zeigt ferner die Form und Grösse der Hervorragungen. Bei dieser Raupe findet man auch echte Haare vom
Zur Kenntniss der Insektenhaut. 39

bekannten Arthropoden-Typus, also Hohlbildungen, die mit den soliden pigmenttragenden Zapfen keine Verwandtschaft aufweisen.

Bei Cynthia lavinia sind die Zeichnungen den eben beschriebenen sehr ähnlich, doch lassen sich die beiden Arten nach dem mikroskopischen Bilde der Cuticula ohne Schwierigkeit unterscheiden. Die Zapfen bei der Lavinia sind nämlich bedeutend kleiner als bei Archippus. Ferner ist die Färbung weniger intensiv, die Grate dagegen sind mehr ausgeprägt, und die Zapfen reichen, wie man in der Seitenansicht erfährt, höher hinauf; die Spitzen sind schärfer. Die Vertheilung der Zapfen ist eine ganz andere, wie schon die Zeichnung der Larve andeutet. Meine Präparate lassen noch mehrere anderweitige Eigenthümlichkeiten erkennen, wodurch die Cuticula von Lavinia sich charakterisirt; ich will nur erwähnen, dass die Zapfen haufenweise gruppirt sind, und zwar je nachdem sie gefärbt, halb (d. h. hell) gefärbt oder ungefärbt sind.

Bei der kosmopoliten Vanessa antiopa ist fast die ganze Haut mit Zapfen versehen. Die Raupe trägt Haare von zwei Formen, und zwar kleinere dunkle neben grösseren, die nach Kalilaugebehandlung nur einen schwach bräunlichen Ton behalten. Diese springen, jedes von einem runden, farblosen, zapfenfreien Felde vor (Fig. 6); jene dagegen lassen die Zapfen bis an ihre Basen kommen. Was die Zapfen betrifft, so sind dieselben von ungefähr gleicher Grösse wie bei Lavinia; sie sind aber weniger zuge spitzt, und zeichnen sich ferner dadurch aus, dass die Zahl der Grate gewöhnlich sechs ist, ein Verhältniss, das um so mehr in die Augen springt, weil die Grate dunkler sind als die übrigen Theile des gefärbten Feldes. Hin und wieder gibt es Stellen, wo die Farbe sehr abgenommen hat, und wo man folglich nur die von der Spitze ausstrahlenden Graten entsprechenden Streifen erkennt; beim Betrachten dieses Bildes denkt man unwillkürlich an eine Colonie von missgestalteten Seesternen.

Bei Grapta interrogationis kommen die Zapfen in Form und Aussehen denen der Vanessa sehr nahe, es ist aber eine Verwechslung unmöglich; bei Grapta ist die Grösse der Zapfen variabel, bei Vanessa dagegen ziemlich constant; ferner wenn man senkrecht auf die Zapfen bei Grapta sieht, so fällt Einem die grosse Unregelmässigkeit der Umriss der pigmentirten Areae sehr auf.
Limenitis disippus wird, was die Cuticula betrifft, dadurch charakterisiert, dass die Zapfen meistens wenig gefärbt sind; und dadurch, dass zerstreute dunkle Zapfen, bald mehr bald weniger zahlreich, überall unter den anderen vorkommen.

Eine zweite Grapta-Art, Comma (Fig. 5), weist schon eine bedeutende Modification auf, indem hier die Zapfen sehr ausgezogen sind. Ihre Färbung ist sehr ausgeprägt; sie liegen meistentheils dicht gedrängt; es wurde aber zum Photographiren eine Stelle ausgesucht, wo die gegenseitigen Entfernungen der Zapfen grösser war. Wir haben also bei der Comma mit förmlichen Stacheln zu thun, die sich schräg nach hinten emporrichten.

Noch weiter in dieser Entwicklungsrichtung gehen die Zapfen bei Papilio philenor (Fig. 4), indem sie so sehr ausgezogen sind, dass sie richtige Haare vortäuschen und die Larve wie mit einem dichten Filzwerk bekleiden. Die wirklichen Haare von Philenor übertreffen jedoch die gefärbten Zapfen etwa fünfmal an Durchmesser und zweimal an Länge, und bieten die weitere Eigen tümlichkeit dar, dass sie plötzlich stumpf endigen, anstatt in die gewöhnliche, sich allmählich verjüngende Spitze auszulaufen.

Man findet auch Formen, bei denen die Zapfen kleiner sind und dabei auch weiter auseinandergerückt erscheinen. Bei Heliconia charitonia, der einzigen in den Vereinigten Staaten vorkommenden Art einer grossen Sippe, sind die Zapfen ziemlich weit von einander gestellt und dabei von auffallender Form, indem ihre Dicke im Verhältniss zur Höhe gross ist, und auch bis nahe an die Zapfenspitze sich wenig verändert; folglich beschreibt das Seitenprofil des Zapfens eine convexe Linie statt der gewöhnlichen concaven.

Eine noch viel auffallendere Abnahme der Zapfen an Zahl und Grösse findet man bei Euptvieta claudia (Fig. 9), hier sind die betreffenden Gebilde höchst einfach; sie sind kleine, schwach gefärbte, stachelartige Hervorragungen von konischer Form; die Basis ist annähernd kreisrund, die Spitze scharf. Die letzterwähnte Eigen tümlichkeit erkennt man bei der Fig. 9 darum nicht, weil die dort gezeichneten Zapfen sämtlich schräg liegen. Bei Agraulis vanillae, einer südlichen Art, sind die Zapfen stellenweise zahlreicher, dagegen etwas kleiner als bei Claudia; Fig. 7 ist nach einer Photographie gezeichnet und gibt daher die Verteilung der Zapfen genau wieder, so wie auch die Grundrisse der-
Zur Kenntniss der Insektenhaut.

die Höhe der Zapfen resp. deren Spitzen ist sehr gering, etwa zwei Drittel nur des Basendurchmessers. Leider ist bei der Photographie der Contrast zwischen den gefärben Zapfen und der farblosen Cuticula verloren gegangen.

Wir haben bei den Raupen von Papilio ajax noch eine dritte sehr zierliche Modification der Cuticula zu berücksichtigen (Fig. 3). Die Zapfen dieser Art sind von schöner Form; von einer breiten Basis steigen die Seiten in sanfter Biegung zu einer hübschen Spitze empor. Die Grate sind besonders deutlich, weil sie viel dunkler sind wie die übrigen Theile; sie verschmelzen an der Spitze und verzweigen sich gegen die Basis zu. Die Zapfen sind über alle untersuchten Theile der Cuticula ziemlich gleichmässig vertheilt. Es fällt dem Beobachter sogleich auf, dass die bergähnlichen Zapfen unter einander an Grösse sehr variiren (Fig. 3). Die Ajax-Larve ist bekanntlich quergestreift; die dunkleren Streifen sind bedingt durch die Anwesenheit zahlreicher gefärbter Pünktchen (Fig. 3). Eine genauere Untersuchung der Präparate lehrt, dass zwischen den isolirten Pünktchen und den eigentlichen Zapfen alle möglichen Uebergänge sich vorfinden — so bemerkt man Stellen, wo die Pünktchen in kleinen Gruppen angeordnet sind, wovon der centrale Theil je etwas erhoben ist; es giebt auch andere Ansammlungen, die sich dadurch charakterisiren, dass die sie bildenden Punkte radiär angeordnet sind; es giebt weiter Erhebungen der Cuticularfläche, bei denen die Pünktchen vergrössert und zum Theil zusammengeflossen sind, also unvollkommene Grate darstellen. Geht die Verschmelzung noch weiter, was in der That zu beobachten ist, so erhält man einen vollkommenen Zapfen, der sich nur durch die geringere Grösse von den vollständig ausgebildeten Zapfen des Ajax unterscheidet. Auf die Bedeutung solcher Uebergänge werden wir zurückzukommen haben.

Wir verlassen jetzt die Schmetterlinge, um die Cuticula einer Noctuide, Anisota stigma, zu beschreiben, weil diese Art uns weitere Aufklärungen der Beziehungen der Pünktchen zu den Zapfen darbietet. Die ganze Cuticula trägt niedrige Zapfen, die dicht gedrängt sind (Fig. 8), dieselben sind hügelartig abgerundet und haben daher keine eigentlichen Spitzen. Ueberall kommen Pünktchen zum Vorschein. An den Stellen, die den hellen Querstreifen der Ranpe entsprechen, sind weder die Hügel noch die Pünktchen
pigmentirt, wohl aber an den dunklen Streifen (Fig. 8). Bei diesen Stellen, im Gegensatz zu jenen, sind die Zapfen sehr dunkel und mit dunklen Pünktchen dicht besät. Auch zwischen den Zapfen kommen die gefärbten Pünktchen vor.

Sieht man genauer zu, so sind die beschriebenen Pünktchen bei Papilio ajax und Anisota stigma nicht einfach gefärbte Stellen der Cuticula, sondern ragen alle um ein Weniges auf der Oberfläche empor. Man wäre berechtigt, sie als kleinste gefärbte Stäechelen zu bezeichnen. Diese Differenzierung der Hautoberfläche ist unter den Arthropoden sehr verbreitet. Es wird zweckmäßig sein, einige neue Beobachtungen, die sich darauf beziehen, hier anzuschliessen.

Bei Agrotis sp. (?) (Fig. 16) findet man gefärbte Flecken Cuticula, wovon jeder aus kleineren, durch hellere Linien von einander getrennten Feldern besteht; jedes Feld ist von einer Anzahl gleichmässiger, dis crater „Pünktchen“ besetzt, deren jedes, von der fast kreisrunden Basis zu einer conischen Spitze ansteigend, die für alle charakteristische Form erkennen lässt. Die Querstreifen der zierlichen Larve von Alypia octomaculata verdanken ihre Farbe einer ähnlichen Anordnung, aber die spitzigen Pünktchen sind hier dunkler und um ein wenig kleiner.

Gleiche Stachelchen sind mir noch bei verschiedenen anderen Arten bekannt geworden, z. B. bei Papilio asterias (Fig. 15). In dem unteren Theile der Abbildung treten die Felder sehr deutlich auf. Auch bei Attacus eceropia, Pseudosphinx tetras und Aletia xyлина sowie bei Papilio turnus, palametes, troilus etc. findet man bestachelte Bezirke oder Pünktchenfelder, wie man die umschriebenen Gruppen mit Rücksicht auf ihr Aussehen bei Betrachtung von oben nennen darf. Die Stachelchen können auch hell oder gar nicht gefärbt sein — letzteres ist bei Attacus eceropia der Fall. Hinwiederum erscheinen sie wie bei Papilio crespontes sehr unregelmässig und zugleich in weiteren gegenseitigen Entfernungen gestellt. Papilio asterias wie das vorhin beschriebene P. ajax bieten Übergänge von den punktierten Feldern zu den echten Zapfen und zwar in der hinteren Hälfte jedes nicht gezackten Querstreifens. Hier sieht man, (Fig 14), die einzelnen Felder durch die Gruppen von vergrösserten, zum Theil verschmolzenen dunklen Pünktchen sehr klar angegeben; die radiäre Anordnung ist schon angedeutet, und da die Mitte des
Zur Kenntniss der Insektenhaut.

Feldes sich fast zu einer Spitze ausgezogen hat, so ist die Annäherung an die Zapfenform nicht zu leugnen.

Die Haut von der Nachtfalterraupe, Oedemasia concinna (Fig. 10), ist auch mit den gefärbten cuticularen Stachelchen versehen; sie lenkt unsere Aufmerksamkeit auf sich aber durch die Vertheilung der mikroskopischen Sculpturen, worüber die gegebene Abbildung die beste Auskunft liefert; ich darf wohl, indem ich darauf verweise, eine weitere Beschreibung unterlassen; es genügt hinzuzufügen, dass bei der Ausführung des Bildes, (Fig. 10), jeder Punkt mit der Camera sorgfältig nach dem Präparat gezeichnet wurde.

Ein ganz besonderes Gepräge hat die Cuticula bei Datana ministra, Fig. 12 und Cimbex americana, Fig. 13. Die breiten dunklen Längsstreifen der erstgenannten Art tragen sehr dicht gedrängte Zapfen, die, von oben gesehen, wie fünf- oder sechssseitige Zellen aussehen, Zellen sind sie aber selbstverständlich nicht, - was nur darum besonders zu erwähnen ist, weil von Seiten der Entomologen die Meinung hin und wieder auftaucht, es habe die Insektencuticula einen zelligen Bau. Ein unerfahrener Histolog könnte wohl durch die Untersuchung der Ministra-Haut zu einer falschen Ansicht verführt werden; es sehen die Zapfen ganz so wie kernhaltige Zellen aus. Der scheinbare Kern aber ist ein rein optischer Effekt, der durch die abgerundete, kuppelartige Form des Zapfens (Pigmentfeldes) bedingt ist; es kommen hierbei zwei Momente in Betracht: 1) die gebogene Fläche wirkt wie eine Linse; 2) man sieht im Centrum gerade, an der Seite des Feldes aber schräg durch die dünne Pigmentschicht. Wo die Wölbung der Felder geringer ist, wie in der unmittelbaren Umgebung der Haare, vermisst man die Wirkung und werden die Felder „kernlos“.

Cimbex americana hat auf jedem Segment einen Längsstreifen, der von einer Färbung der äussersten Schicht der Cuticula abhängt; Fig. 13 stellt einen Theil des Randes des Streifens dar. Die einzelnen Felder sind sehr deutlich und ausserordentlich gross; die Grenzen unregelmässig zackig; die Fläche jedes Feldes ist gewölb, jedoch dabei sehr uneben.

Zum Schluss der Beobachtungen ist bei allen von mir untersuchten Lepidopteren-Larven das Vorkommen von Stellen der Cuticula zu erwähnen, die sich durch ihre ovale oder rundliche Form auszeichnen, die nie Zapfen tragen und glatt und beinahe eben
sind (Fig. 11 und 15). Eigentlich glatt sind sie nicht, indem sie für jede Art charakteristische Zahl von Stachelchen („Pünktchen“) besitzen. Die Stachelchen können gefärbt oder farblos sein, ebenso die Stellen selbst. Die Stellen fallen sehr in die Augen, da sie sehr zahlreich sind und durch ihre Farbe resp. Farblosigkeit bei vielen Arten einen scharfen Gegensatz zu ihrer Umgebung bilden. Ihre Vertheilung ist der Art, dass sie gegen den vorderen Rand jedes Segmentes hin zwei unterbrochene Querreihen bilden; Fig. 15 umfasst einen Theil des hinteren Querbandes eines Segmentes von Papilio asterias. Ferner befinden sich die betreffenden Stellen in geringerer Zahl auch in anderen Bezirken meistens symmetrisch vertheilt. Bei Aletia xylina wenigstens ist die Vertheilung auf allen Segmenten des Körpers mit Ausnahme des letzten eine annähernd gleiche.

Die Vermuthung liegt nahe, dass die beschriebenen Modifizierungen der Cuticula mit unbekannten Sinneswerkzeugen in Verbindung stehen. Es hat mir leider bisher an geeignetem Material zur Untersuchung der zugehörigen Weichtheile gefehlt.

Bekanntlich sind die Modifizierungen der Cuticula bei Insekten zum grossen Theil als „einzellig“ zu bezeichnen, das heisst der eine einzige Zelle bedeckende Theil kann für sich differenzirt werden. Einerseits haben wir als Beispiele die echten hohlen Haare, andererseits die nicht hohlen Cuticularzapfen. Dass diese Zapfen, jeder mit einer einzigen Zelle, in Beziehung stehen, darf wohl als festgestellt gelten. Schon vor mehreren Jahren machte ich ¹) besonders auf diese Beziehung aufmerksam. Balfour ²) in seiner Peripatus-Arbeit beschreibt die mit feinen Stachelchen besetzten einzigen Zapfen des Peripatus capensis. Ich möchte bei dieser Gelegenheit ausdrücklich hervorheben, dass dieser Bau wahrscheinlich für sämtliche Tracheaten ein phylogenetisch primitiver sei. Sehr ähnliche sind die Verhältnisse bei Anabrus; die 1880 veröffentlichte Beschreibung lautet: „Second, the whole of the cuticula except the cones just described and the hairs, is divided into numerous minute fields (Fig. 63 and 65), each of

which corresponds to a single cell of the underlying epidermis. Each field is bounded by a distinct polygonal outline, and its surface is either covered by a large number of extremely minute projecting points (Fig. 65), as on the dorsal arch, or is smooth as upon the articular membrane and ventral arch. Upon the sides of the dorsal arch and upon the spiracular membrane each field has a projecting spine or sometimes two or even three.

Bei der obigen Beschreibung der Cuticula von Danae archippus erwähnte ich die äussere dünne, Pigment tragende Schicht. Dieselbe besteht bei allen von mir untersuchten Larven ohne Ausnahme. Die einzige Erwähnung dieser Lage, die mir bisher bekannt geworden ist, rührt von Minot und Burgess 1) her; ich lasse den betreffenden Passus (l. c. p. 46) folgen:

"The markings, colored stripes and dots, that decorate the larva, are produced by various means, partly by deposits in the matrix of the crust (epidermal cells), partly by colors of the crust itself. The darkbrown color belongs to the crust, and is peculiarly distributed in a manner that has not, so far as we are aware, been described hitherto. Upon the outside of the crust is a very thin but distinct layer, which in certain parts rises up into a great number of minute, pointed spines that look like so many dots in a surface view, Plate VI, Fig. 8. Each spine is pigmented diffusely, and together they produce the brown markings. The spines are clustered in little groups, one group over each underlying matrix, or epidermal cell."

Vergleichende Zusammenfassung.

Es lässt sich auf der äusseren Seite der Cuticula der untersuchten Insekten-Larven, eine sehr dünne Lamelle erkennen, die sich oft durch starke Färbung auszeichnet. Die Oberfläche ist in den meisten Fällen in Felder getheilt, wovon jedes einer einzigen darunter liegenden Epidermiszelle entspricht; gewöhnlich hebt sich die Mitte jedes Feldes bald mehr bald weniger empor; die erwähnte Lamelle überzieht die Erhebungen und bildet oft über jeder derselben ein diskretes Pigmentkleid. Die Form der Erhebungen

sowie die Vertheilung des Pigmentes variirt nach der Art, und zwar sehr mannigfaltig. Die primitive Form, woher die jetzt vor-kommenden sich ableiten lassen, ist wohl durch Peripatus und mehrere Orthopteren so wie andere Insekten angezeigt; sie war eine einziger Zelle entsprechende mehr weniger zu einer Spitze an-steigende Erhebung der schon dicken Cuticula, und trug eine bedeutende Anzahl von kleinen Spitzen, die von oben gesehen je das Bild eines gefärbten Pünktchens liefern, die aber auf einem senkrechten Querschnitt der Cuticula ihre wirkliche Form erkennen lassen. Es können die Grenzen zwischen den Feldern verwischt werden und die Spitzen erhalten sein (Alypia) oder an Zahl vermindert (Fig. 10). Oder es können die Erhebungen bleiben und dabei die „Pünktchen“ durch ihre Vergrösserung zum Zusammenfließen gebracht werden (Fig. 14). Durch eine weitere Veränderung nach derselben Richtung wird die ganze Erhebung von einer ununterbrochen pigmentirten Lamelle überzogen. Solche Farben tragende Zapfen kommen sehr häufig bei Schmetterlingsraupen vor. Sie sind bald dicht gedrängt, bald weit auseinander gestellt, hier sind sie hitzelartig (Fig. 13), dort zugespitzt, (Fig. 5), ja sogar bis zu einer Haarform ausgezogen (Fig. 4); bei einigen Arten sind sie bergähnlich, was das Aussehen betrifft.

Aus diesen Beobachtungen erfahren wir, dass schon ein Stück der Cuticula ausreicht zur Bestimmung der Art. Dadurch gewinnen wir eine neue Handhabe zur Ausarbeitung des natürlichen Systems der Insekten, einer bis jetzt sehr vernachlässigtten Aufgabe. Auch für die paläontologische Forschung können die Beobachtungen Werth besitzen. Leider gehören die fossilen Raupen zu den allergrössten Seltenheiten; selbst in der ausserordentlich reichen Sammlung meines geehrten Freundes, Herrn S. H. Scudders, befindet sich unter vielen Tausenden von fossilen Insekten nur eine einzige Raupe, die ich aber durch die Gefälligkeit des Herrn Scudder zu untersuchen Gelegenheit gehabt habe. Dieselbe stammt vom Oligocän (?) bei Florissant, Colorado, und trägt die Catalognummer 16383 1). Man bemerkt sofort die deutliche Färbung. Die Raupe misst 17 mm der Länge nach. Der Kopf ist dunkel, die Körperelemente gestreift; der grosse dorsale Streif

1) Herr Scudder theilt mir mit, er kenne sonst nur zwei fossile Lepidopterenlarven, und zwar Satyrites incestus, Daudin (Rev. Mag. de
Zur Kenntniss der Insektenhaut.

bildet auf jedem Segment einen halb gesonderten Fleck. Nachdem die Fläche mit Wasser benetzt, oder noch besser wenn ein Tropfen darauf gebracht und mit einem Deckgläsehen bedeckt wurde, erkennt man bei auffallendem Lichte an jedem dunklen Theil der Raupe eine scharfe Eintheilung in vier-, fünf- oder sechseckige Feldchen, die sehr dicht liegen; die Feldchen sind sehr dunkel und scharf geschieden; sie haben jedenfalls nicht die gespitzte Form, die bei vielen Raupen vorkommt (Fig. 2 etc.), sondern sehen mehr wie die Feldchen bei Anisota stigma, (Fig. 8) aus, doch schien mir an manchen Stellen jedes Feld punktiert zu sein, etwa wie bei Fig. 16, nur etwas dunkler; ich konnte aber wegen der Schwierigkeit der Untersuchung der ranhen Steinfläche leider keine Gewissheit hierüber gewinnen. Die Beobachtung reicht aber hin, den Nachweis zu liefern, dass an der versteinerten Raupe ein mikroskopischer Bau der Haut noch zu erkennen ist, wodurch die betreffende Art von allen anderen bisher auf die Haut untersuchten Raupenarten zu unterscheiden wäre. Die kleine Beobachtung hat mir viel Vergnügen gebracht. Man fragt sich, ob die künstliche Versteinerung nicht in die mikroskopische Technik einzuführen sei!

Erklärung der Abbildungen auf Tafel VII.

Figg. 1 u. 2. Danais archippus.

Fig. 1. Flächenansicht des Randes eines dunklen Querstreifens der Larve.
Fig. 2. Querschnitt der Cuticula, um die Form und Grösse der Hügel zu zeigen und zugleich die Verhältnisse der oberen, dünneren, pigmentirten Schicht anzugeben.

Zool. [8] IV, p. 415—424, Pl. XVII) vom Oligocän bei Aix, und eine Sphinxlarve von Solenhofen (Arch. Mus. Peyler II, Pl. XXXIV). Er fügt brieflich hinzu: „Some have been found in Amber, but that is different".
Zur Frage der Secretion und der Structur der Becherzellen.

Von

Dr. Joseph Heinrich List in Graz.

In meinen Arbeiten über Becherzellen habe ich die Hypothese aufgestellt, derzufolge es sich bei der Ausstossung des Inhaltes derselben um eine Art Quellungsprozess 1) handle. Ich war zur Aufstellung dieser Hypothese sowohl durch die Beobachtungen an frischen Objecten, als auch besonders durch diejenigen an Präparaten gekommen.

In einer vor Kurzem erschienenen Arbeit 2) erklärt nun L. Merk, gestützt durch seine Beobachtungen an einem trefflichen Objecte, meine Hypothese, die durch Beobachtungen an ganz an-

1) Die ausführliche Erörterung dieses Processes findet sich in meiner im Archiv f. mikr. Anatomie, Bd. XXVII, erschienenen Arbeit „Ueber Becherzellen“.

J. H. List: Zur Frage der Secretion und der Structur der Becherzellen. 49
deren Objecten gewonnen, für eine irrthümliche. Die Secretion
an den Becherzellen in der Oberhaut von Forellenembryonen voll-
zieht sich in der Weise, dass, in den weitaus häufigsten Fällen,
aus den Stomata Körnchen äusserst lebhaft ausgestossen werden
und nachher verschwinden. Aber auch Secretion mit Pfropfbil-
dung, welch' letztere schon von früheren Autoren beobachtet wor-
den, kommt vor und zwar unter der Erscheinung des Körnchen-
platzens, wie Merk den Vorgang bezeichnete. Die Pflöpfe,
welche aus den Stomata hervorragen, und welche sehr häufig all-
mäthlich an Grösse zunahmen, zeigen eine lebhafte Bewegung der
sie zusammensetzenden Körnchen, bis an irgend einer Stelle ein
Stück verschwindet, und man den Eindruck erhält, als hätte da-
selbst ein Platzent stattgefunden.
Ich habe selbst, nachdem ich auf das erwähnte Object durch
Prof. v. Ebner und den cit. Autor aufmerksam gemacht worden,
Gelegenheit gehabt, an lebenden Embryonen lange Zeit hindurch
die Secretion an den Becherzellen beobachten zu können. Ich
cann die erwähnten Secretionsvorgänge im Grossen und Ganzen
bestätigen, obwohl ich die Secretion an pfropflosen Zellen etwas
anders beobachtete, als sie der genannte Autor darstellt 1). Ich
konnte nämlich an denselben stets bemerken, dass sich der Inhalt
gegen das Stoma zu bewegte und dass sich erst dann kleine,
körnchenartige Partikelchen von den dem Stoma zunächst liegen-
den Inhaltsteilchen loslösten und herausgeschleudert wurden.
So sehr ich nun von diesen Secretionsvorgängen, die an
lebenden Objecten zu beobachten sind, überzeugt bin, so erscheint
e s mir doch zu gewagt, auf Grund der Befunde an einer Art von
Becherzellen, die daselbst gefundenen Secretionerscheinungen als
allgemein gültig hinzustellen. Schon die dreierlei Arten von
Secretion, nämlich die Pfropfbildung mit Körnchenplatzen,
die Abschnürung von Pfröpfen und die Herausschleuder-
ung von Körnchen ohne Pfropfbildung, die an einem
Objecte zu beobachten sind, weisen nicht nur auf graduelle,
sondern auch auf qualitative Unterschiede hin.

1) Ich bemerke hier, dass ich diese Beobachtung in meiner Arbeit
"Ueber Becherzellen" bereits niedergeschrieben hatte, ehe mir durch die
Freundlichkeit des Verfassers die vorläufige Mittheilung in dem Academ.
J. H. List:

Merk betont zwar meiner Quellungshypothese gegenüber, dass, wenn eine Quellung stattfände, die Pöffpfen weniger stark lichtbreechend sein müssten. Dem halte ich aber entgegen, dass man die am lebenden Objecte sich vollziehende Volumszunahme der Interfilarmasse nicht einfach mit den durch Reagentien bewirkten gequollenen und wirklich schwächer das Licht brechenden Pöffpfen vergleichen darf. Wenn man bedenkt, dass der Secretionsproces (Ansstossen von Pöffpfen) sich auf eine längere Zeit hindurch erstreckt, so ist es gar nicht nöthig, eine solche intensive Quellung 1) vorauszusetzen, dass sich der Unterschied des Secretes optisch merklich kundgibt.

Im zweiten Theile seiner Arbeit theilt Merk seine Beobachtungen über die Einwirkung der gebräuchlichsten Härungsmittel (Flemming's Gemisch, Chromsäure, Osmiumsäure, Alcohol) auf lebende Becherzellen mit und kommt zum Schlusse, dass das in den Becherzellen zu beobachtende, von Schiefferdecker und mir beschriebene, aus Filarmasse bestehende Gerüstwerk nur durch die verwendeten Härungsmittel hervorgerufen worden wäre und demnach im Leben nicht zu beobachten sei. Diesem Anwürfe muss ich entschieden entgegentreten schon aus dem Grunde, da Merk gar nicht mittheilt, ob er meine Objecte controlirt hat. Und es ist, so glaube ich, doch notwendig, bevor man eine Arbeit kritisirt, dass man vor Allem die Objecte sich genauer ansieht, an denen der kritisirte Autor gearbeitet. Ich kann es gerade nicht als vorsichtig bezeichnen, auf Grund der Befunde an einem Objecte dieselben gleich zu verallgemeinern und über sämtliche geschahen Beobachtungen den Stab zu brechen. Nirgends finde ich, dass Merk sich auch tingirte Schnitte durch die Becherzellen der

1) Mit dem Ausdrucke Quellung will ich nur eine Volumszunahme des Zellinhaltes (Interfilarmasse) bezeichnen, ohne über den Vorgang selbst Näheres angeben zu können.
Forellenembryonen angesehen und mit den Structuren anderer Becherzellen verglichen hätte; er wäre dann auf die manigfachsten Unterschiede der Structuren in den verschiedensten Becherzellen gewiss aufmerksam geworden.

Ohne mich hier in eine nähere Erörterung der Structuren einzulassen, die in meiner im Druck befindlichen Arbeit ausführlich besprochen werden, will ich hier nur betonen, dass man an zahlreichen Objecten, auch im frischen Zustande, das Gerüst der Filarmasse deutlich beobachten kann. Allerdings kann man in den Becherzellen aus der Oberhaut der Forellenembryonen nichts dergleichen sehen, und selbst an tingirten Schnitten gelang es mir innerhalb der Thecae derselben nur eine granulirte Masse, deren Granula allerdings in Form eines nur sehr undeutlich wahrnehmbaren Gerüstwerk es angeordnet erschienen, wahrzunehmen. Es bieten so die Becherzellen in der Oberhaut der Forellenembryonen jene Formen dar, die man in den tiefsten Schichten geschichteter Pflasterepithelien oft beobachten kann, und die nur als die Entwicklungsförmen der an die Oberfläche gerückten Becherzellen zu betrachten sind.

die dadurch hergestellt worden, dass die frischen Objecte rasch in Osmiumsäure oder in Flemming’s Gemisch geworfen wurden, gelang es mir nicht, ähnliche Bilder wahrzunehmen.

Wie sehr verschieden sich die Becherzellen aus der Oberhaut der Forellenembryonen gegenüber Reagentien im Verhältniss zu andern Becherzellen verhalten, geht aus der Beobachtung Merk’s hervor, der nach Isolation mit Drittel-Alkohol keine Quellungserscheinungen beobachten konnte. Ich muss gestehen, dass dies Verhalten, so viel ich nach meinen Erfahrungen über Becherzellen urtheilen kann, einzig dasteht.

Auch Müller’sche Flüssigkeit, die ich zur Isolation so vielfach verwandte, ruft an manchen Epithel- und Becherzellen bedeutende Quellungserscheinungen hervor. So konnte ich die Becherzellen aus den Barteln von Cobitis fossilis nur mit Osmiumsäure isoliren, da die aus Müller’scher Flüssigkeit stammenden, isolirten Präparate zu bedeutend gequollen waren.

Es sind dies Thatsachen, die darauf hinweisen, dass Reagentien, die für eine Reihe von Objecten ganz vortreffliche Dienste leisten, selbst für histologischidentische Gebilde nicht immer brauchbar sind.

In dieser Beziehung hat sich Merk jedenfalls ein Verdienst erworben, indem er auf die ausserordentlich zarten und veränderlichen Becherzellen aus der Oberhaut der Forellenembryonen die Einwirkung der gebräuchlichsten Reagentien sorgfältig studirte und dadurch zur Vorsicht in der Anwendung der letzteren mahnte. Ob aber des cit. Autors Vorgehen, Schiefferdecker’s und meine Beobachtungen für irrhümlich zu erklären, ohne sich die Objecte der kritisirten Autoren angesehen zu haben, gerechtfertigt ist, wird künftige Forschung lehren, ebenso, wie weit Merk in Conflict mit der modernen Zellenlehre geräth. Um aber Merk’s skeptische Auffassung über Zellstructuren einigermaassen abzuschwächen,

möchte ich ihm ein Object empfehlen, an welchem man auch im lebenden, absolut frischen Zustande Filar- und Interfilarmasse schön beobachten kann, das sind die Leydig'schen Zellen in der Oberhaut des Schwanzes von Tritonlarven.

(Aus dem zoologischen Institut in Kiel.)

Zum feineren Bau des Wimperapparates.

Von

Johannes Frenzel.

Hierzu Tafel VIII.

Die ersten Beobachtungen, welche mich auf diesen Punkt führten, machte ich im Frühjahr dieses Jahres in Triest, wo mich der rege Eifer des dortigen Naturalienhändlers Johann Kossel
Johannes Frenzel:

Die Flimmerepithelien gehören zu denjenigen Geweben, welche am frühesten die Aufmerksamkeit der Forseher in Anspruch genommen haben. Ihre Verbreitung ist aber bekanntlich nicht auf diejenigen Orte angewiesen, wo man sie zuerst bemerkt hat, sondern je mehr man sich von den Objekten, welche ehemals fast einzig und allein der Histologie zu Grunde gelegen haben, entfernt, je mehr man mit anderen Worten in dem Thierreiche hinausteigt, um so umfangreicher wird im Allgemeinen das Gebiet, welches die Flimmerzellen umfassen. Bei dem Menschen und den übrigen Sägethiereien beschränken sie sich mehr auf den Respirationskomplex, einige Theile der Geschlechtsorgane u. s. w. Die Reptilien und Amphibien lassen weiterhin schon im Verdauungssystem Flimmerepithelien nachweisen. Unter den Wirbel-
losen stehen allerdings die Arthropoden ganz abseits, da bei ihnen ein derartiges Gewebe überall vermisst wird, an dessen Stelle nun zwar andere Elemente auftreten, welche, wie sich weiter unten zeigen wird, wenigstens in morphologischer Hinsicht mit jenem eine gewisse Ähnlichkeit besitzen. Ganz im Gegensatz hierzu finden wir bei den Mollusken und Tunicaten einen grossen Theil der Organe mit unserem Epithel behaftet, so bei den ersteren die Kiemen (Lamellibranchier), die Verdauungsorgane (Lamellibranchier, Prosobranchier und Opisthobranchier), verschiedene Theile des Geschlechtsapparates und schliesslich sogar viele Stellen der Körperbekleidung, wie z. B. die Fusssohle, die Fussdrüsen (2) (J. Carrière), die Rückenpapillen der Aeoliden u. s. w. Auch bei den Würmern kann man gleiche Beobachtungen machen, namentlich bei den Turbellarien. Der Darmkanal vieler Anneliden zeigt lebhafte Flimmerung, ausführende Gänge sind mit Wimperorganen versehen u. s. w. Aehnliches gilt weiterhin von den Echinodermem, deren histologischer Bau allerdings noch wenig durchgearbeitet ist. Doch sind zuletzt von O. Hamann (3) in erster Linie vom Darmtractus der Asteriden, vom Steinkanal der Holothurien (4) etc. Flimmerzellen beschrieben worden. Unter den Coelenteraten braucht schliesslich nur an die Ctenophoren erinnert zu werden, deren Schwingplättchen ja nach C. Chun aus einzelnen Wimperhaaren bestehen, und auch die Spongien sind hier anzureihen, an die sich schliesslich ganze Gruppen von Infusorien anschliessen, die man geradezu als freilebende Flimmerzellen betrachten könnte.

Schon Engelmann 1) hat darauf aufmerksam gemacht, dass der Bau des Flimmerapparates durchaus kein übereinstimmender ist. Dies gilt zuvörderst für den Grad, den dessen morphologische Complicirtheit erreicht. Das Einfachste, was man sich denken kann, ist ja, dass auf der Oberfläche der Zelle ganz gleichförmig gebaute Haare entspringen, die eine weitere Gliederung nicht erkennen lassen. Diese „direkten Verlängerungen des Protoplasmas“ fand Engelmann bestätigt für viele einzellige Organismen und für viele Flimmerepithelzellen von Metazoën; und in der That wird man sich an gewissen Orten vergeblich bemühen, mehr als ein härchenartiges, in keiner Weise differenziertes Gebilde zu sehen.

1) l. c. p. 506.

Die erste Differenzierung im Bau der Flimmerhärchen ist nun die der Fussstücke, wie besonders Th. Eimer (5) und Engelmann nachgewiesen haben, und wenngleich diese Gebilde schon von Anderen, wie J. Eberth, Marchi etc. gesehen worden sind, so ist es doch vor Allem Engelmann’s Verdienst, den unmittelbaren Zusammenhang dieser Fussstücke einerseits mit den eigentlichen Cilien und andererseits mit der sog. Wimperwurzel nachgewiesen zu haben, derartig also, dass jede Faser der letzteren kontinuirlich in das Fussstück, dieses aber in die eigentliche Cilie übergeht.

Zum feineren Bau des Wimperapparates.

der Autor, um es schon an dieser Stelle zu erwähnen, über diesem Saum und am Grunde der Cilien einen schmalen Streifen, welcher sich mit Fuchsin sehr stark färbt; er „möchte ihn für Schleim halten, welcher sich da ansetzt, falls er nicht doch dem Saume angehört“. — Weiter unten werden wir erkennen, wofür dieser „Streifen“ angesehen werden muss; jetzt sei nur noch auf einige ähnliche Irrthümer hingewiesen, welche sich hier und da finden. Als solch ein Irrthum muss es wohl auch bezeichnet werden, wenn Eduard Meyer (7) das Flimmerepithel des Oesophagus von Polyophthalmus pictus mit einem cuticularen Saume versieht, dem die Cilien aufsitzen; und wenn wir an diesem Saum nicht einmal eine Streifung angegeben sehen, so bleibt eigentlich nur die Annahme übrig, dass diese Feinheiten beim Conserviren des Gewebes zerstört worden waren, wobei eine Quellung der einzelnen Fussstücke derartig stattgefunden haben muss, dass sie gewissermassen in einander verschmolzen sind. Auch die Angaben, welche Isao Jijima (8) über das Pharynxepithel von Süßwasser-Dendrocoelen macht, werden nach dieser Richtung hin einer kleinen Verbesserung bedürfen. Jijima lässt nämlich dieses Epithel eine „stark gefärbte körnige Cuticula besitzen (l. e. p. 390 und Taf. XX, Fig. 11), an welcher er feine Poren unterscheiden will, durch welche die kurzen aber starken Cilien nach aussen zu gehen scheinen“.

Wenngleich sich nun noch mehr ähnlicher Beispiele heranziehen liessen, so kann man doch schon jetzt behaupten, dass sich trotz der epochemachenden Arbeit Engelmann’s die Ansichten über den Bau des Flimmerapparates wenig über die ältere Cuticulartheorie erhoben. Allerdings hat O. Hamann im Darm der Asteriden recht wohl den verfänglichen Saum in einzelne Stücke aufgelöst. Leider aber sind die beigegebenen Zeichnungen etwas mangelhaft ausgeführt (l. e. Asteriden, Taf. VI, Fig. 54—57 a), so dass man nicht weiss, ob man die etwas in der Luft schwebenden basalen Verdickungen der Cilien für die Fussstücke oder, wie es fast in der Zeichnung aussieht, für die Bulbi der Cilien halten soll. — Von den wenigen Zoologen, welche zu einer richtigen Auffassung gelangt sind, sei hier schliesslich nur R. Jacobi (9) genannt, welcher an dem Hypodermisepithel der Polydoren die Engelmann’schen Angaben bestätigen konnte (l. e. p. 11).

Da ich nicht im Stande war, alle die oben als irrtümlich bezeichneten Darstellungen selbst zu prüfen, so wird diese Kritik
als ungerechtfertigt erscheinen. Wenn man aber bedenkt, dass sich jene Untersuchungen nicht mit dem lebenden Gewebe, sondern fast ausnahmslos mit Spiritusmaterial beschäftigten, so wird man ihnen nicht in allen histologischen Einzelheiten, zumal wenn es sich um besondere Feinheiten handelt, ein gleiches Vertrauen schenken dürfen. Dazu kommt noch der sehr bedeutsame Umstand, dass seit Engelmann's Reform an keinem einzigen physiologisch frischen Präparat eine zusammenhängende Cuticula nachgewiesen worden ist, welche ihrerseits erst die Cilien trüge, abgesehen von Fällen, wo es sich um eine sehr dünne Zellmembran handeln sollte.

Engelmann beschreibt und zeichnet seine Fussstücke, um nun auf diese näher einzugehen, als kleine, etwa cylindrisch zu denkende Säulchen, welche ungefähr doppelt so hoch als breit oder doch nur wenig höher sind. Zuweilen sind sie auch völlig isodiametrisch, in welchem Falle — an Zellen aus der Nasenschleimhaut des Frosches — Engelmann sie als „Körnchen“ bezeichnet hat. Besitzen die Fussstücke jedoch eine etwas größere Dimension in der Längenrichtung, werden sie mit anderen Worten stäbchenförmig, so lässt sich an ihnen in der Regel noch eine weitere Gliederung auffinden. Wenn dies Engelmann nicht gelungen war, so mag es zum Theil daran liegen, dass diese Gliederung nicht überall vorhanden ist, namentlich wenn die Fussstücke immer noch niedrig sind und kaum die doppelte Höhe ihrer Dicke erlangen, was im Darm von Cyclas und wohl auch von Anodonta einzutreffen scheint. Zum Theil aber wird der Umstand ferner in Betracht zu ziehen sein, dass Engelmann hauptsächlich todte, d. h. durch eine Macerationsflüssigkeit veränderte Zellen untersuchte.

Bei Betrachtung der Abbildungen, welche Engelmann von den Kiemen einiger Muskeln, z. B. von Cyclas (l. c. Taf. V, Fig. 5 und 10) und Anodonta (Fig. 9), sowie von anderen Flimmerzellen giebt (Darm von Cyclas Fig. 13, von Anodonta 15), muss es auffallen, dass die Fussstücke nicht als einfache freie Stäbchen, sondern dass sowohl ihre oberen wie auch unteren Enden untereinander durch Linien verbunden sind, so dass das Bild einer doppelt contourirten Cuticula nachgeahmt wird, die eine gleichmässige Strichelung zeigt. Nun hat allerdings der Autor nachgewiesen und durch Abbildungen bekräftigt,
dass in einigen Fällen, nämlich an den Eckzellen der Cyclaskiemie, die Fussstücke derartig verschmelzen oder richtiger reihenweise aneinander gefügt werden, dass zwei parallele Leistehen entstehen (l. c. p. 512, Fig. 6 und 7); für die übrigen Fälle muss aber eine andere Erklärung Platz greifen.

An den Kiemenzellen von einigen Lamellibranchiern, z. B. von Mytilus, Cardium, Mya etc. sehe ich nämlich ganz deutlich bei etwa 620 facher Vergrösserung, dass die Fussstücke nur scheinhaar einen oberen und einen unteren Contour besitzen; denn sie bestehen nicht schlechthin aus einem einfachen Stäbchen von gleichartigem Durchmesser, sondern jedes dieser Stäbchen ist an seinem oberen wie auch an seinem unteren Ende mit einem scharf umschriebenen, anscheinend kugeligen Knöpfchen versehen. Und liegen diese Zellen in seitlicher Ansicht vor, so reiht sich ziemlich dicht gedrängt Knöpfchen an Knöpfchen, so dass zwei parallel ziehende perlschnurartige Linien zu Stanze kommen. Ist diese Erscheinung durch irgend welche Umstände, meist wohl durch die Einwirkung fremdartiger Flüssigkeiten, unentdeckt oder verwasch, oder wendet man zu schwache und unscharfe Vergrösserungen an, so bilden sich jene beiden geschlossenen Contouren, oder man erhält sogar das seitliche oder Durchschnitzbild einer mit Poren versehenen Membran, geradezu wie es in ähnlichen Fällen, z. B. im Mitteldarmkomplex der Arthropoden, ganz allgemein der Fall ist.

An vielen Stellen, wo man gewohnt war von einer doppelt contourirten Cuticula zu sprechen, lassen sich derartige Knöpfchenreihen, wie sie kurz bezeichnet werden mögen, mit Leichtigkeit nachweisen. Unsere Fig. 7 stellt ein Stück des Darmepithels von einem Wurm, Arenicola marina, bei etwa 800 facher Vergrösserung dar. Man kann hier die einzelnen Punkte oder Knöpfchen haarscharf von einander trennen. Ferner sieht man, wie von jedem der oberen Knöpfchen das eigentliche Wimperhaar entspringt. Es sei übrigens schon hier bemerkt, dass jene oberen Knöpfchen durchaus nicht unmittelbar zu diesem Wimperhaar gehören und dass sie nicht etwa mit dessen Bulbustheil identisch sind. Auch bei anderen Würmern finden sich ferner ähnliche Verhältnisse, so bei Terebella zostericola, wo namentlich die oberen Knöpfchen scharf hervortreten und als Basis für die sehr langen Flimmerhaare dienen. Umgekehrt ist es im Darm von Scoloplos armiger,
wo die untere Knöpfchenreihe deutlicher ist, während die obere erst beim Ermatten des Wimperspiels ihr Dasein zu erkennen gibt.

Bei Aricia foetida scheint J. Gaule (10) schon ähnliche Verhältnisse vor Augen gehabt zu haben. In der Wiedergabe des Kiemenepithels dieses Thieres nämlich werden die Fussstücke Engelmann’s in Fig. 3 durch zwei parallele Reihen markirt, von denen jede aus aneinandergefügten Punkten besteht. Wenngleich nun auch in der genannten Abbildung die Verbindungsstücke zwischen je einem oberen und einem unteren Punkte fehlen, so hebt Gaule doch ausdrücklich das Vorhandensein von „Fussstücken“ hervor und beschreibt sie auch als ganz kurze Stäbchen (l. e. p. 157), welche den Cilien zum Ursprung dienen. Wenn wir uns aber an diese wenigen Worte des Textes halten, so bleibt doch die Ansicht Gaule’s über den Bau der Fussstücke durchaus zweifelhaft, und da die Stäbchen nicht eingezeichnet sind, so ist es auch möglich, dass nur ihre Endpunkte schlechtweg angegeben werden sollten, gleichgültig, ob sich diese in ihren Eigenschaften von dem übrigen Theil der Stäbchen unterscheiden oder nicht.

Dass thatsächlich in den meisten Fällen ein Unterschied zwischen beiderlei Elementen vorhanden ist, lässt sich leicht erkennen. In der Regel glänzen die beiden Knöpfchenreihen stärker als die zwischen ihnen liegenden Stäbchenstücke, so dass sie beim Heben und Senken des Tubus bald als dunklere, bald als hellere Linie erscheinen. Ferner färben sie sich mit verschiedenen Carminintincturen und wässerigem Hämatoxylin besonders intensiv, ein Umstand, der ja auch schon J. Carrière’s Aufmerksamkeit erregt hat, wenngleich seine Deutung eine unsichere war.

Bei dem hier vorgeführten Beispiel aus dem Darm von Arenicola ist der Stäbchensaum noch ein sehr niedriger. Wir können uns nun den ganzen Apparat ebenso beschaffen denken, lassen dann aber die beiden Knöpfchenreihen auseinanderrücken, so dass mithin die dazwischen liegenden Stäbchen sich in die Länge strecken. Im ersteren Falle sind sie nämlich etwa doppelt oder höchstens dreimal so hoch als dick (Fig. 7); sie können aber, was bei Würmern seltener, dagegen weit häufiger bei Echinodermen und Mollusken eintritt, noch andere Dimensionsverhältnisse annehmen. Ja, diese Erscheinung ist eine so weit verbreitete und
so charakteristische, dass es fast Wunder nehmen muss, warum sie so lange unbekannt geblieben ist. Dies liegt zum grössten Theil wohl daran, dass unter den Mollusken fast nur Anodonta und Cyclas zur Untersuchung benutzt wurden, wo gewissermassen zufälligerweise der von den Fussstücken gebildete Saum sowohl in der Kieme wie auch im Darm ein niedriger ist. Eine einzige hierher gehörige Beobachtung habe ich in der älteren Litteratur anstellen können, nämlich die, welche Fr. Boll (11) an den Fühlern eines Meeresgastropoden, Calyptraea, gemacht hat, und wenngleich diese Beobachtung ja noch keine korrekte Auslegung erfahren konnte, so verdient sie doch besonders erwähnt zu werden, um so mehr, als Boll richtig erkannte, „dass sie für die Histologie des Wimperepithels von hohem Interesse ist (l. c. p. 52). Die Fühler von Calyptraea sind nämlich „von einem Flimmerepithel überzogen, an dessen Zellen der freien Fläche zugekehrte Saum Dimensionen angenommen hat, wie ich sonst an keiner Stelle auch nur annähernd gesehen habe und welche denselben vollkommen einer echten Cuticula ähnlich machten. Derselbe wurde von den Wimperhaaren deutlich durchbohrt und erschien wie von Porenkanälen durchzogen“ (Fig. 23). In der neueren Zeit hat dann auch J. Carrière am Fussohrenepithel von Fasciolaria liguria und Tritonium cutaceum einen „ziemlich breiten gestreiften Saum“ konstatiert (l. c. p. 400; Taf. XXIII, Fig. 30, 31 und 32).

Recht merkwürdig ist auch das, was B. Hatschek (12) am präoralen Wimperkranz einer Annelidenlarve gesehen hat. Hier ist nämlich „die hohe Cuticula von Porenkanälen durchbohrt, die in ihrem Verlauf eine scharfe Anschwellung zeigen“ (Fig. 23). Wenn wir jedoch diese Kanäle als Fussstübchen der Cilien auffassen würden, wozu doch gewiss eine grosse Berechtigung vorhanden ist, so würde diese Anschwellung mit unseren Knöpfchen identisch sein, nur dass diese hier in die Mitte des Stäbchens zu liegen kommen. — Aehnlich wie Boll hat schliesslich auch Carl Grobben (13) an verschiedenen Epithelien des Harn- und Geschlechtsapparates der Cephalopoden unter den Cilien einen hohen cuticularen Saum angetroffen. So fand er die Zellen der sog. Venenanhänge von Sepia mit einer „dicken blassen Cuticularsicht behaftet, die zuweilen wie aus Stäbchen zusammengesetzt erscheint“ („Stäbchen-cuticula“), und an einer anderen Stelle wird durch diesen Stäbchenzerfall sogar das Bild einer Wimperung der Zellen vorgetäuscht“
(l. c. p. 19). Endlich traf Grobben auch in der Hodengegend von Eledone eine ansehnliche breite Cuticularschicht, welche von den Wimpern durchsetzt wird (l. c. Taf. II, Fig. 13), eine Schicht, die im Leibeshöhlenepithel der Cephalopoden besonders hoch ist (ebenda Fig. 17).

Der Zwischenraum zwischen den beiden Knöpfchenreihen kann sehr verschiedene Dimensionen annehmen. Recht gering sind diese noch im Darm von Rissoa (Fig. 1), wo jedoch die Knöpfchen von großer Schärfe sind und noch eine andere Complication eintritt, die weiter unten zur Sprache kommen möge. Eine nächst höhere Stufe nimmt nunmehr das Darmepithel der sog. Flachmuschel, Scrobicularia piperata, ein (Fig. 4), denn hier sieht man schon bei 620facher Vergrösserung den Saum von einer Breite, welche die des danebenstehenden Saumes von Arenicola marina, der stärker vergrössert ist, um ein mehrfaches übersehretet. Hier haben wir auch einen Fall, wo die Knöpfchen, vielleicht wegen ihrer sehr eng gedrängten Stellung, so wenig markirt und von einander gesondert sind, dass sie einen geschlossenen Contour zu bilden scheinen und den unbefangenen Beobachter veranlassen würden, das Ganze als den optischen Schnitt einer mit Poren versehenen Cuticula zu deuten. Dieses Bild erinnert lebhaft an die schon oben citirten Abbildungen Engelmann's von den Kiemenzellen der Süßwassermuscheln.

Die Längenentwicklung der Stäbchen bleibt hier noch nicht stehen, wie uns ein Blick auf die allerdings um das Doppelte vergrösserte Fig. 2 unserer Tafel lehrt (Darmepithel von Lymnaeus stagnalis); sie wird noch auffälliger in Fig. 9 bei Tellina baltica (Darm), wo die Knöpfchen nicht nur durch einen breiten Zwischenraum getrennt werden, sondern sogar überaus schön zu erkennen sind. Besonders hier wie auch in später noch zu nennenden Fällen kann es gar nicht mehr zweifelhaft bleiben, dass die beiden Stabenden nicht nur bedeutend verdickt sind, sondern dass diese Verdickungen auch etwas andere optische Eigenschaften als die zugehörigen Stäbchen selbst haben.

Dieser so beschaffene Stäbchensaum erinnert wegen seiner Mächtigkeit lebhaft an denjenigen, der auf den Epithelien des Darmkomplexes der Arthropoden auftritt, worauf zum Schluss noch einmal zurückgekommen werden soll. Zwar kann seine Dimension bei den letzteren noch in's Ausserordentliche steigen, was beim
Zum feineren Bau des Wimperapparates. 63

reinen Flimmerepithel selbst in den extremsten Fällen nicht eintritt. Immerhin kann es hier recht wohl vorkommen, dass die eigentlichen Cilien kaum viel länger als ihre Fussstücke sind. Schon im Darm von Tellina mögen die Fussstäbchen, wie diese so verlängerten Fussstücke heissen könnten, eine Länge von etwa 2,5 μ haben. Gehen wir weiter, so treffen wir bei den Echinodermen in grosser Verbreitung einen hohen Stäbchensaum; bei Asteracanthion rubens war dieser zwar in der Oesophagusregion niedrig, während die Wimperhärchen durch ihre Länge auffällen. Auch an der Magen- decke fand ich einen ebenso niedrigen Saum, der hier nur kurze Cilien trug. Die sog. Leberanhänge des Darm- traktus jedoch wie auch der Magendarm von Ophioderma longicaudata besitzen einen recht hohen Fussstäbchensaum. Dort messen sie etwa 3,5—4 μ (Fig. 5), hier sogar schon 51/2—6 μ (Fig. 6). Im Vorderdarm von Littorina littorea (Fig. 10 und 11) und von Cardium edule (Fig. 14) kann er gleichfalls 3,5—4 μ lang sein. Im Darm verschiedener Arten der Gattung Doris (Fig. 3 und 16) halten sie gleichfalls diese Grenze inne, während bei Philine aperta sich leicht loslösende Flimmerzellen anzutreffen waren, deren mächtiger Saum etwa 6,25 μ hoch war (Fig. 15), ein Verhältniss, das vielleicht noch von Aplysia punctata übertroffen wird (Fig. 13 c).

Wie ein Blick auf die angefügten Abbildungen lehrt, ist der Bau dieser Fussstäbchen kein ganz übereinstimmender. Zunächst kann es sich ereignen, dass eine oder beide Knöpfchenreihen entweder ganz fehlen oder unter gewöhnlichen Umständen wenigstens nicht sichtbar sind. Dies fiel mir im Magendarm von Ophioderma auf (Fig. 6), wobei sich herausstellte, dass sich der Stäbchensaum bei den Echinodermen in mehrfacher Hinsicht wesentlich von dem der Mollusken unterscheidet. Dort ist er nämlich weniger lichtbrechend, infolge dessen er bei scharfer Einstellung matter und heller aussieht. Bei Untersuchung in Seewasser könnte man ihn daher zuweilen übersehen. Andererseits kann er hier aber auch deutlicher als irgend wo anders werden, weil die einzelnen Stäbchen bei den Echinodermen dicker als an anderen Orten sind und ferner nicht so gedrängt zu stehen scheinen, womit es wohl zusammenhängen dürfte, dass namentlich im Magendarm von Ophioderma die Flimmerhärchen vereinzelter eingefügt sind, wie von O. Hamann bereits angegeben wird. Ausserdem sind die letzteren im Gegensatz zu den Stäbchen recht fein und noch schwerer
sichtbar, so dass man oft nur die durch sie hervorgerufene Be- wegung der umgebenden Partikelchen gewahrt. Eine feinere Differenzierung der Flimmerhärchen selbst wird man hier daher vergeblich suchen, so dass diese vor der Hand als direkte Fort- sätze der Fussstäbe angesehen werden mögen. Ich vermute aber doch, dass auch im Magen von Ophioderma die Knöpfchen der letzteren nachweisbar sein werden, worauf ja schon das Verhalten von Asteracanthion rubens hinweist. Hier konnte ich in allen Theilen des Darmgebietes die untere Knöpfchenreihe immer auffinden, und namentlich in den sog. Leberanhängen ist sie von schlagender Deutlichkeit (Fig. 5). Nur die obere Knöpfchenreihe bietet noch einige Abweichungen dar, denn in den dorsalen Magenanhängen, wo der Saum niedrig ist, sind sie schwach und undeutlich, während die des Magenepithels desselben Thieres das Gegen- theil aufweisen. Ihr Verhalten mag nun nicht immer ein gleich- artiges sein, worauf das Leberepithel schliessen lässt. Zuvörderst war es mir kaum möglich, hier diese obere Punktreihe festzustellen, und erst beim Wechsel der Belichtung, wie es scheint beim Uebergang von der geraden in die schiefen, sprangen die einzelnen Knöpfchen plötzlich haarscharf hervor, eine Erscheinung, die ebenso kurz vor dem Absterben der Flimmerbewegung eintreten kann, vielleicht in Folge einer chemischen Aenderung ihrer Zusammensetzung. Im Uebrigen gilt für Asteracanthion das schon oben Gesagte; auch hier sind die Stäbe dick und wenig glänzend. Oft stehen sie schief oder bilden aus Ursache der mechanischen Ein- griffe einzelne unregelmässige Gruppen, so dass man ihre unmittelbare Zugehörigkeit zu den Cilien recht wohl einsehen kann, denn diese fehlen in den so entstandenen Lücken ebenfalls.

In ähnlicher Weise wie bei diesen Echinodermen vermisste ich die obere Knöpfchenreihe im Darm von einem Mollusk, Doris tuberculata, eine Aehnlichkeit, welche sich noch darauf erstreckte, dass auch hier die untere Reihe recht gut sichtbar war, wenn- gleich es schwer hielt, die einzelnen Knöpfchen aufzulösen. Hier besteht der Saum aus hohen, ziemlich dicken und daher deutlichen Stäben (Fig. 16), so dass es doppelt auffallend erscheint, dass die oberen Knöpfchen nicht zur Wahrnehmung kamen und der Uebergang in die viel dünnere Wimper so wenig markirt war.

Das gerade Entgegengesetzte ist, wie ich mich wiederholt überzeugt habe, im Vorderdarm von Cardium edule zu bemerken,
insofern nämlich, als hier die untere Punktreihe nicht sichtbar wird, so dass also die Grenze des eigentlichen Zellleibes und der Beginn des Stäbchensamnes nur wenig ausgeprägt ist (Fig. 14). Dafür ist jedoch die obere Knöpfchenreihe nicht nur um so deutlicher, sondern die Knöpfe scheinen auch grösser oder doch längekriger als sonst zu sein.

Diese zuletzt genannten Vorkommnisse sind gewissermassen nur als Ausnahme zu betrachten, denn meistentheils ist die obere wie die untere Reihe in gleicher Weise ausgebildet, etwa wie bei Doris spec. (Fig. 3) oder bei Tellina (Fig. 9). Nun kann aber der Stäbchensaum noch eine weitere Complication eingehen, besonders dort, wo er an und für sich schon von beträchtlicherer Höhe ist. Wo dies letztere nicht der Fall ist, nämlich bei den Würmern, bleibt diese Complication aus, während sie bei den Mollusken recht häufig statthaben kann und auch bei den Echinodermen nicht fehlen dürfte.

Bei den bisher besprochenen Epitheliern waren nur ein unteres und ein oberes Knöpfchen vorhanden. Nicht selten hat man aber den Eindruck, als wenn der untere Contour nicht einfach, sondern vielmehr doppelt ist, und an günstigen Objekten sieht man dann, dass sich über diese unterste Knöpfchenreihe noch eine ebenso gebildete einschiebt, über welcher erst in grösserer Entfernung die obere Punktreihe folgt. Es könnte wohl erscheinen, als ob dieses Bild auf einer optischen Täuschung beruhte, namentlich wenn man ein wenig geeignetes Objekt vor Augen hat. So konnte ich bei Doris tub. oder Aster. rub. über der untersten stärkeren Linie nur eine viel feinere verfolgen, die in der That der Reflex jener hätte sein können. Bei den isolirten Zellen von Philine aperta jedoch musste jeder Zweifel schwinden, da hier wie auch in anderen Fällen von einem Reflex nicht mehr gesprochen werden kann, wo man ganz unverkennbar die eingeschobene Linie in scharf mar- kirte Knöpfehen oder Pünktchen auflösen konnte. Völlig hierfür beweisend ist ein Macerationspräparat von Aplysia, welches dadurch gewonnen wurde, dass man ein Darmstück mehrere Stunden lang sich selbst überliess, bis die Epithelzellen wie von selbst auseinanderfielen, ohne ihre Form irgendwie merklich zu verändern. Bei einigen der macerirten Zellen war freilich von alledem nichts mehr zu sehen (Fig. 13 b). Andere zeigten hingegen den ganzen Stäbchensaum, von dem nur die eigentlichen Cilien abgefallen
waren (Fig. 13 c), und obgleich hier schon vieles zerstört war, so konnte man doch die Gliederung der Stäbchen in die kleineren unteren Stücke, deren Form an Klötzen erinnert, und in die längeren oberen Stücke, welche die eigentlichen Stäbchen vorstellen, in zweifelloser Weise wahrnehmen. Sämtliche Knöpchen waren allerdings bis zur Unsichtbarkeit verändert. Eine andere Zelle (Fig. 13 a) aber zeigte die Eigenthümlichkeit, dass vom ganzen Wimperapparat nur noch jene Klötzen erhalten waren, die an ihrem oberen Ende noch Reste ihrer Knöpchen trugen, welch’ letzteren also unsere Neben-Knopfchenreihe darstellen. Schon hieraus kann man den Schluss ziehen, dass diese unteren von einem oberen und einem unteren Knöpchen begrenzten Stäbchenstücke sich in ihren Eigenschaften etwas von den oberen Stücken unterscheiden, dass mithin jedes Stäbchen aus zwei verschiedenen Theilen besteht, von denen das untere Fussklötzen heissen möge.

Dass in der That in solchen Fällen eine derartige Gliederung des Stäbchensaumes stattfindet, zeigt uns noch besser das Darmepithel von Littorina littorea, welches man in völlig frischem Zustand am leichtesten präpariren kann, wenn man einen Gewebsfetzen aus dem vorderen Stück des freiliegenden Darmtheiles neben der blass lilafarbenen Niere herausschneidet. Fig. 10 unserer Tafel veraugenscheinigt das mehr aus dem Oesophagus entnommene Epithel bei 600facher Vergrösserung, während Fig. 11 aus der soeben bezeichneten Stelle herrührt und der Deutlichkeit halber in der Zeichnung etwa verdoppelt ist. Sieht man genau zu, so erkennt man über jedem der äusserst deutlichen Basalknopfchen (u. k.) ein kurzes kräftiges Stück, das Fussklötzen, von denen wieder jedes einzelne in genau derselben Höhe ein weniger gut sichtbares und blasser erscheinendes Knöpchen trägt (n. k.). Auf diesem letzteren, dem Nebenknöpchen, erhebt sich nun das schlankere und etwa um das sechsfaehige längere Stäbchen, das seinerseits mit dem sehr grossen oberen Knöpchen (o. k.) endigt. Dieses erst trägt die eigentliche Cilie. Bei seitlicher Ansicht hat man also drei völlig von einander getrennte Knopfchenreihen vor sich. In der Regel ist die eingeschaltete Reihe (n. k.) weniger deutlich und erscheint wie gesagt oft nur als feine Linie, wie etwa bei Doris tub. Zuweilen mag diese Erscheinung aber wirklich auf optischer Täuschung beruhen, z. B. bei Asteracanthion
Zum feineren Bau des Wimperapparates.

rubens, wo sie sich beim Heben und Senken des Tubus hin und her bewegt und zuweilen auch verdoppelt oder gar verdreifacht ist. In den übrigen Fällen jedoch hat man einen sicheren Beweis, dass eine solche Täuschung ausgeschlossen ist. Abgesehen davon, dass z. B. bei Littorina die sog. Klötzen dicker als die übrigen Stäbchentheile aussehen, und abgesehen ferner davon, dass die Nebenkörpchen ganz distinkt umschrieben sind, so gewahrt man noch ein eigen tümliches Phänomen. Lässt man nämlich das stetig beobachtete Gewebe unter dem Mikroskop allmählich absterben, so hört das Flimmerspiel auf und die Cilien knicken um, wobei sie sich auf die Stäbchen legen. Sodann verschwindet die obere Knöpchenreihe, die zuerst so ungemein deutlich war, dem Auge, während die Fussstäbchen selbst noch unverändert bleiben. Gleichzeitig geht aber auch an den Fussklötzen eine Wandlung vor sich, indem sich das Verhältniss zwischen den beiden unteren Knöpchenreihen umkehrt, dergestalt, dass jetzt die Nebenreihe scharf hervorspringt, während die unterste verblasst. Somit muss man erkennen, dass erstere nicht das Reflexbild der letzteren sein kann, denn dann müsste sie gleichfalls in demselben Maasse verblasen und abnehmen. Sie müsste sogar eher verschwinden und nicht, wie es thatsächlich der Fall ist, noch mehr markirt werden (Fig. 12).

Wo zwei untere Knöpchenreihen vorhanden sind, kann man durchweg annehmen, dass die unterste normalerweise die stärkere ist. Eine Abweichung von dieser Regel scheint jedoch am Darmepithel von Rissoa vorzukommen, wobei allerdings eine optische Täuschung nicht ausgeschlossen ist. Wir hatten schon gesehen, dass hier beide Reihen sehr eng übereinander laufen (Fig. 1). Sie sind beide schön markirt. Ausserdem sah ich aber noch zu wiederholten Maleen einen dritten Contour und zwar unterhalb der unteren Reihe. Dieser neue Contour war sehr undeutlich, schmal und dicht an jener Reihe. Es lässt sich mithin über diese Erscheinung nicht viel aussagen, doch möchte ich recht wohl glauben, dass wir es hier gleichfalls mit einer Nebenreihe zu thun haben, wenn sie nicht etwa schon im eigentlichen Zelleib liegt und vielleicht auf die protoplasmatische Streifung zurückzuführen ist.

Von Th. Eimer, M. Nußbaum (14) und besonders von Engelmann ist gezeigt worden, dass die Cilien auf den Fussstücken aufsitzen, dass sie also deren Verlängerungen sind und
nicht zwischen sie fallen. Diese Angaben können wir im vollsten Maasse bestätigen, wenngleich es an diesem Orte nicht beabsichtigt war, darauf näher einzugehen. Die genannten Autoren haben ihre Resultate namentlich an Isolations- und Macerationspräparaten erreicht; denn am völlig intakten Gewebe ist dieser Beweis kaum zu führen, da die Wimperhaare so dicht stehen, dass man den Verlauf jedes einzelnen Elementes nicht verfolgen kann. Es ersehnt sich aber nicht selten schon bei Behandlung des frischen Epithels, bei Aster. rub. z. B., dass die Fussstücke oder -stäbe, wie sie hier heissen müssen, büschelförmig auseinanderweichen und dass hier und da auch einmal ein einzelnes Stäbchen zu stehen kommt, auf dem man dann das Flimmerhaar sieht. Ehe mir dies klar wurde, glaubte ich aus Zweckmässigkeitsgründen vernüthen zu dürfen, dass diese Haare zwischen den hohen, bewegungslosen Stäbchen hervorwachsen, da sie so doch unmittelbar mit dem Zellleib zusammenhängen und davon nicht durch eine Schicht getrennt würden, deren Bedeutung fur das Wimperspiel nicht recht ersichtlich ist. Dennoch aber gilt für diese Stäbchen, um es noch einmal zu wiederholen, das, was Engelmann für die um so viel niedrigeren Fussstücke bewiesen hat.

Die Grössenverhältnisse zwischen den eigentlichen Flimmerhaaren und den Fussstäben können die verschiedenartigsten sein, und ein direktes Abhängigkeitsverhältniss zwischen beiden existirt hierin nicht. Auf einem ganz niedrigen Stäbchensaum können ausserordentlich lange Härchen sitzen, wie wir dies bei Rissoa sehen (Fig. 1). Vom Darm der Scrobicularia gilt Ähnliches (Fig. 4). Oft messen diese aber nur das vier- oder dreifache des Sauces, wie etwa bei Philine (Fig. 15), Doris tub. (Fig. 16), Cardium, Tellina etc. Zuweilen sind sie ferner nur doppelt so lang, wofür man Ophioderma anführen könnte (Fig. 6). In einigen Fällen aber sind die Cilien sogar nur wenig länger als die dazu gehörigen Fussstäbe, wie z. B. in der sog. Leber von Aster. rub. und ganz besonders bei Littorina, wo also die auffällige Erscheinung eintritt, dass vom ganzen Flimmerapparat die eine Hälfte auf die steifen Fussstäbe, die andere erst auf die beweglichen Cilien verwendet wird (Fig. 10 und 11).

In den meisten Fällen scheinen auch hier die Flimmerhaare, der Angabe Engelmann's entsprechend, in ein unteres dünnes
Zum feineren Bau des Wimperapparates.

„Zwischenglied“ (l. c. p. 517), in ein darauf folgendes angeschwollenes Bulbusstück und in die eigentliche Geissel gegliedert zu sein. Da am lebenden Gewebe diese Gliederung oft schwer sichtbar ist, so kann man sie leicht übersehen. In einigen Zeichnungen habe ich sie daher auch fortgelassen. Wie nun schon Engelmann der Meinung sein dürfte, dass der Bau dieser Härchen nicht immer in der Weise complicirt ist, so glaube ich mich ihm an einigen Stellen anschliessen zu müssen; denn im Darmtractus der Echinodermen beispielsweise suchte ich vergeblich nach dieser Gliederung. Zuweilen sind freilich die sog. Zwischenglieder schon bei 600facher Vergrösserung ohne weitere Kunstgriffe gut zu erkennen, wie etwa bei Littorina (Fig. 10 und 11).

Die sofort über den obersten Stabknöpfchen beginnenden Zwischenglieder glänzen so wenig, dass man ihrer kaum gewahr wird, weshalb Engelmann nicht Unrecht that, als er sie in einigen seiner Abbildungen ganz fortfallen liess und durch einen leeren Raum markirte. Immerhin kann man sie fast stets als feine Strichelehen erkennen.

Die Zwischenglieder gehen plötzlich in den Bulbustheil über, der im frischen Zustand als ein heller, glänzender, den Knöpfchenreihen paralleler Contour erscheint, wie etwa in Fig. 1 (h. b.) bei Rissoa, Fig. 10 und 11 bei Littorina, ferner bei Cardium, Doris etc. An manchen Orten kann man diesen Contour recht wohl in einzelne, ebenfalls knöpfchen- oder eher birnförmige Punkte auflösen, so dass man auch hier wieder vor einem Trugbilde sicher ist (Littorina). Man beobachtet dort also, wie sich über der obersten Knöpfchenreihe jedes einzelne Element plötzlich verdünnt, wie es dann in geringer Höhe ebenso plötzlich anschwillt, um sich dann nach oben hin birn- oder zwiebelförmig zuzuspitzen, so etwa, wie es Engelmann a. a. O. in Fig. 9 und 10 dargestellt hat.

Die eigentlichen lebhaft hin und her schwingenden Härchen sind, wie wir gesehen, im Allgemeinen nicht nur länger als die Fusstäbe, sondern sie sind auch dünner, besonders wenn wir die Echinodermen in Betracht ziehen. Dann aber scheint ihr Querdurchmesser zu ihrer Länge in keinem Abhängigkeitsverhältniss zu stehen, da kurze Härchen ziemlich dick, lange hingegen äusserst schlank sein können, und umgekehrt. — Ob sie aus einer ganz homogenen Substanz bestehen, muss noch völlig zweifelhaft bleiben. Ich habe jedenfalls keine Differenzierung irgend welcher Art an
ihnen wahrnehmen können. Dennoch scheint, was ja auch bereits Engelmann erwähnt, die Spitze der Cilien eine etwas andere Eigenschaft als der Schaft zu haben. In der That sieht man zuweilen die Spitze dicker oder etwas glänzender (Fig. 10), wobei das erstere eine auf letzterem beruhende optische Täuschung sein wird. Beim Absterben oder bei Einwirkung gewisser Reagentien bemerkt man dann auch noch eine andere Erscheinung, die auch schon zu wiederholten Malen beschrieben worden ist. Die freien Endtheile der Cilie bilden sich nämlich zu kleinen knugelförmigen Knöpfchen oder Kügelchen um (Fig. 7), welche sich meist stärker tingeren als die Schäfte. Diese Kügelchen sind aber durchaus nicht präformirt, sondern sie treten erst auf irgend einen wahrscheinlich rein chemischen Einfluss hin auf, indem das Ende der Cilien in der angegebenen Weise verändert wird, woraus man vielleicht schliessen kann, dass sein chemischer Bau ursprünglich schon etwas von dem des Cilienschafftes differirt.

Wie wir nunmehr gesehen haben, kann der extracelluläre Wimperapparat eine complicirtere Struktur annehmen, als man vermuten sollte. Sehen wir ihn doch bei Rissoa aus acht verschiedenen Gliedern bestehen; denn jede ganze Wimper wird zusammengesetzt 1) aus einem dem Zelleib aufsitzenden Knöpfchen, 2) dem darauf folgenden Klötzchen, das hier merkwürdigerweise mächtiger entwickelt ist, als an anderen Stellen der ganze Stäbchensaum, 3) dem Nebenknöpfchen, das 4) in das Stäbchen übergeht, welches 5) mit dem oberen Knöpfchen endet. 6) Dieses trägt das Zwischenglied, an das sich 7) der Haarbulbus mit dem Schaft 8) anschliesst.

Die ausserordentliche Ausbildung der Fussstücke, welche schliesslich als Stäbchen, Borsten oder steife Haare imponiren können, giebt uns Veranlassung, diese Gebilde mit dem Stäbchen- oder Härchensaum zu vergleichen, wie er sich an vielen anderen Orten findet. Diese Veranlassung erscheint mir um so dringender, als vor Kurzem von O. Tormier (15) eine ganz ähnliche Einrichtung wie die, welche ich bei Wirbellosen angegeben, an anderen Stellen, namentlich bei Wirbelthieren, aufgefunden ist, so dass also deren Verbreitung eine sehr grosse ist, was übrigens schon vor mehreren Jahren von mir vermutungsweise ausgeprochen war. Das Vorkommen eines deckelartigen Saumes auf Epithelzellen, welcher wie eine gestrichelte Cuticula aussieht, in

Wenn wir nun danach fragen, welche Aehnlichkeiten und Beziehungen zwischen diesem aus Härcchen oder Borstchen bestehenden Zellsaum und dem Stäbebensaum der Flimmerzellen vorhanden sind, so finden wir in beiden Fällen zum grossen Theil dieselben Dimensionen wieder, so dass eine Flimmerzelle nach Verlust ihrer beweglichen Cilien wie eine Härcchensaum- oder Bürstenzelle ausschien würde (Fig. 12). Solche gemein hin niedrig zu nennende Säume trifft man bei einer in der Phronima schmarotzenden Gregarine (24) an, ferner durchgängig im Mitteldarmcomplex der Decapoden (20) und Isopoden (19) (l. c. Taf. IV, Fig. 1, 2, 3, 4, 16, 17, 18, 20, 22, 24, 25, 31, 32, 33, 34 etc.; l. c. Taf. IX, Fig. 13, 27, 29), im Mitteldarm vieler Insekten, besonders der Coleopteren (21) (l. c. Taf. VIII, Fig. 11, 19, 22) und in der Mitteldarmdrüse, der sog. Leber, vieler Mollusken (22) (l. c. Taf. V und VI, Fig. 14).
Der Härchensaum kann aber auch Dimensionen annehmen, welche die der Fussstäbchen bei weitem übertreffen. So hat unter den Amphipoden schon Phronima im sog. Magen lange Borsten; unter den Insekten habe ich es an vielen Stellen gefunden, so namentlich bei Raupen (l. c. Taf. VII, Fig. 5, 7, 8; Taf. VIII, Fig. 18) und bei den Hymenopterenlarven (l. c. Taf. VIII, Fig. 17; Taf. IX). Unter den Mollusken schliesslich finden sich in der sog. Leber der Cephalopoden ziemlich lange Borstchen auf den Fermentzellen. Die kolossalsten Dimensionen können jedoch im Mitteldarm der Insekten erreicht werden, worauf ich bereits bei früherer Gelegenheit hinweisen konnte. Doch mögen des Vergleichs halber noch zwei Abbildungen hier Platz finden. Die erste, Fig. 17, aus dem Mitteldarm einer leider nicht näher bestimmten Dipterenlarve entnommen, zeigt noch ein normaleres Verhältniss, indem hier die Härchen zwar schon lang sind, aber doch nicht die längsten Fussstäbchen vom Darmepithel der Mollusken übertreffen. Die zweite Abbildung, Fig. 18, aus dem Mitteldarm von der Tenthredolarve führt uns dagegen nicht nur eine riesige Zelle vor, deren Durchmesser etwa 100 \(\mu \) betragen würde, sondern auch einen Härchensaum, dessen Höhe etwa 35 \(\mu \) ausmacht und die längsten Flimmerhaare mitsamt ihren Fussstücken übertrifft.

Unter gewissen Bedingungen aber, z. B. nach Behandlung mit Reagentien, gruppiren sich diese Härchen derartig, dass sie unter theilweisem Zusammenbacken sich zu dickeren Stäben vereinigen, die gleichfalls wieder in so regelmässiger Weise angeordnet sind, dass man glauben sollte, sie seien dazu prädisponirt gewesen. Es wäre daher interessant zu untersuchen, ob die Fuss-
stäbe der Flimmerhärchen nicht vielleicht auch aus einzelnen feineren Härchen bestünden.

Man wird nun fragen, ob an den Härchensammlzellen auch die oben besprochenen Knöpfehen nachweisbar sind. — Dies kann nun für die unteren Knöpfehenreihen in vielen Fällen bejaht werden, für die oberen jedoch nur in wenigen. Die ersteren finden sich beispielsweise im sog. Magen von Phronima, früher von mir als durchbohrte Membran bezeichnet, ebenso im Mitteldarm von Maja, Dromia und von Insekten (Fig. 18). Die letzteren traten allerdings nur als „Kunstprodukt“ auf, wie etwa am selben Ort oder im Mitteldarm der Bienenlarve, aber dieses Kunstprodukt ist doch immerhin auffällig genug, um hier erwähnt zu werden. Zum Schluss muss noch hervorgehoben werden, dass ich solche Knöpfehen auch an einer frischen Insektenzelle gesehen habe, nämlich bei oben bezeichneten Fliegenlarve (Fig. 17). Man brauchte sich in der That nur auf jedem dieser Knöpfchen eine Cilie vorzustellen, um eine völlige Uebereinstimmung mit einer Flimmerzelle zu haben.

Auch in chemischer Hinsicht werden endlich keine erheblichen Differenzen zwischen dem Flimmern tragenden und dem nackten Zellsaum vorhanden sein. Das optische Verhalten im gewöhnlichen Licht ist ein sehr ähnliches. Beiderlei Gebilde haben, was mir wichtig erscheint, durchschnittlich die gleiche Färbbarkeit, und wenn es im letzteren Falle zu einer Knöpfehenbildung kommt, so färben sich ohne Ausnahme diese Knöpfehen ebenso intensiv wie die der Flimmerzellen, woher es kommt, dass auch hier so oft ein scharfer Contour vorgespiegelt wird und zur Verwechselfung mit einer Cuticula Veranlassung giebt.

Vor Kurzem (21) hatte ich vorgeschlagen, diese beiden in Rede stehenden Epithelzellarten zu der gemeinsamen Gruppe der „Wimperzellen“ zu vereinigen (l. e. p. 286), die dann in echte „Flimmerzellen“ und „Härchensammlzellen“ zu teilen wären. Wenn ich nun an anderer Stelle gesagt habe (l. e. p. 169), dass „die sonst steifen Härchen zu beweglichen Wimpern werden“, so möchte ich sie damit noch nicht, wie Tornier annimmt, „in eine Reihe mit Flimmereilien“ stellen, vielmehr wollte ich nur sagen, dass sich bei einigen Molluskenarten „eine besondere Gestaltung oder eine Umgestaltung des Sammes vollzogen hat“, womit durchaus nicht behauptet werden sollte, dass die Flimmereilien etwa
umgewandelte Härchen oder gar Stäbchen seien. Ganz im Gegen-
theil glaube ich hier die Vermuthung aussprechen zu können, dass
 diese Härchen mit den Fussstäbchen der Flimmerrelinen in nähere
Beziehung zu bringen sind.

Diese Beziehungen scheinen nun noch weitergehende zu wer-
den, wenn man die intracellularen Fortsetzungen des Wimper-
apparates in Betracht zieht. Diese bei den echten Flimmerzellen
als Wimperwurzeln oder -stiele bezeichneten Zellstrukturen sind
schon seit Langem durch die Arbeiten Eberth's, Marchi's, Eimer's,
Nussbaum's und besonders Engelmann's bekannt. Von den Letzteren
ist auch der unmittelbare Zusammenhang jeder der intracellularen Fasern mit einer Cilie nachgewiesen worden. Derartige Apparate
wurden denn auch so vielfach bestätigt, dass sich allmählich die Meinung verbreitet hat, als sei dieses den grösseren Theil der Zelle durchsetzende Fasersystem ein unbe-
dingtes Zubehör, wenn nicht gar das eigentliche Agens der Flim-
merbewegung. Mir scheint aber, dass man hierin wird etwas vor-
sichtiger sein müssen; denn es wird in manchen Fällen schwer
sein, ein solches Fasersystem nachzuweisen (cfr. Engelmann).

So gelang es mir in neuerer Zeit in der sog. Leber mancher
Muscheln und Hinterkiemer Flimmerzellen aufzufinden, die fast
vollständig von einer für sich abgeschlossenen grossen Sekretblase
erfüllt wurden, welche im oberen Zelltheil nur eine ganz schmale
Zone frei liess, so dass es gar nicht zur Entwicklung von Wimper-
wurzeln kommen konnte. Und dehnoch war das Flimmerspiel ein
sehr lebhaftes!

Ganz im Gegensatz hierzu ist es nicht schwer, nicht flim-
mernde Epithelien namhaft zu machen, wo gleichfalls ein Streifen-
system innerhalb der Zelle sichtbar wird, was bereits auch Engel-
mann beachtet. Hier ist zuerst an die Stäbchensaumzellen zu
denken. So fand Lebedeff (16) bei Behandlung des Nierenge-
webes mit Osmiumsäure einen Zerfall des Zellinhalts in „Stäb-
chen" im Zusammenhang mit den Stäbchen des Saumes. Auch
A. Sommer sah in Mitteldarmzellen eine feine Längsstrichelung,
die vielleicht irgend einen Zusammenhang mit den Härchen hat
(cfr. l. c. Taf. XXXIV, Fig. 9). Dasselbe hatte ich in den Mitteldarm-
zellen des Mehlwurms (18) wahrgenommen und noch viel unzweifel-
hafter in der sog. Leber der Decapoden (19), wo dicht unter dem
Zellsaum die oft bis zum Kern reichenden Fasern beginnen (l. c.
Zum feineren Bau des Wimperapparates.

Taf. IV, Fig. 2, 32), sowie im Mitteldarm von Insekten überhaupt, so von Blatta orientalis (Taf. VIII, Fig. 19) etc. Zwar giebt V. Tornier von den Tubulis contortis der Säugethierniere an, dass er wohl den Heidenhain'schen Stäbchenzerfall der Zellen bestätigen konnte, aber eine Beziehung zwischen „Bürstenhaaren“ und diesen Stäbchen nicht erkannt hat, was auch „gar nicht zu erwarten“ sei, da „ja Stäbchenzerfall ohne Bürsten“ vorkomme und umgekehrt.

Immerhin scheint mir in diesen Punkten eine weitere Ähnlichkeit oder doch wenigstens kein prinzipieller Unterschied zwischen Flimmerzellen und Bürsten- oder Pinselzellen, wie wir die Härrchensaumzellen der Kürze halber nennen wollen, zu bestehen. Wir werden hieran nur noch eine kurze Besprechung über die physiologische Bedeutung der einzelnen Theile des Wimperapparates zu knüpfen haben.

Bekanntlich hat Engelmann schon die physiologischen Beziehungen der Wimperwurzeln zu den Cilien besprochen, wozu er sich durch den innigen anatomischen Zusammenhang beider Elemente genöthigt sah. Wie er mit Recht darauf hinweist, dass die Wimperwurzeln nicht contractil sind, also nicht unmittelbar die Flimmerbewegung hervorrufen können, zeigt er auch, dass sie ebenso wenig einer nervösen Funktion werden dienen können. In beiden Punkten möchte ich mich schon deshalb diesem Autor anschliessen, als ja bei unseren Bürsten- oder Pinselzellen an keine dieser beiden Funktionen gedacht werden kann. Wenn ferner die einzelnen Fasern der Wimperwurzel wirklich contractil wären, so müssten sie nicht nur die Cilien, sondern auch deren Fussstücke und -stätchen in Schwingungen versetzen, wovon aber de facto nichts zu bemerken ist. Die Stäbchen sind vielmehr völlig bewegungslos, und höchstens an vereinzelten Zellen kann man bemerken, dass sie ein wenig hin und her wackeln. Dies ist aber hier nur eine Folge der lebhaft schlagenden Flimmerung.

Wird man nun auch nicht unbedingt der Meinung sein wollen, dass jede Cilie ein für sich bestehender Bewegungsorganismus ist, so wird man die treibenden Kräfte doch in anderer, complicirterer Weise wirken lassen müssen, als dass jede einzelne Wurzelfaser nach der einen oder anderen Richtung in rythmischen Intervallen an den Cilien einen Zug ausübt.

Es erscheint mir daher vorläufig und bei dem jetzigen Stande unseres Wissens keine andere Erklärung nahe liegender, als dass der Stäbchen-, Borsten- oder Härchensaum, bei den Flimmerzellen sowohl wie auch bei den Pinsel- und Bürstenzellen ein Schutzge- bilde für die empfindliche und sonst gänzlich nackte Zelle dar-
stellt. Es wird sich erst bei weiter fortgesetzter Arbeit feststellen lassen, in wieweite eine solche Erklärung zulässig bleibt.

Kiel, im Juli 1886.

Litteraturverzeichniss.

3) Beiträge zur Histologie der Echinodermen. Heft 2. Die Asteriden etc. von Dr. O. Hamann. Jena 1885.

Erklärung der Abbildungen auf Tafel VIII.

Sämtliche Beobachtungen sind mit der Wasserimmersion B von R. Winkel Ocul. 2 und halb eingeschobenem Tubus, also bei etwa 620facher Vergrösserung eingestellt. Diese Vergrösserung ist auch im Allgemeinen bei den Abbildungen beibehalten, bei einigen jedoch, wie an geeigneter Stelle angegeben, verändert.

Allgemeine Bezeichnungen:
- c. = Cilien,
- f. s. = Fussstäbe,
- h. b. = Haarbulbi,
- n. k. = Nebenknöpfchen,
- o. k. = obere Knöpfchen,
- st. = Stäbchen,
- u. k. = untere Knöpfchen,
- Z. g. = Zwischenglieder.

Fig. 1. Darmepithel von Rissoa spec. Die Zellen sind fast kubisch, sie besitzen lange Cilien. Der Stäbchensaum niedrig. Von den drei Knöpfchenreihen ist die unterste sehr undeutlich und zweifelhaft. Vergr. = 2 × B.

Fig. 2. Höhere Darmzellen von Lymnaeus stagnalis. Der Saum ist etwa halb so hoch wie die Cilien selbst. Drei Knöpfchenreihen, von denen die oberste die deutlichste ist. Vergr. = 2 × B.

Fig. 3. Darmzellen von Doris spec. (Triest). Hoher Saum mit zwei deutlichen Knöpfchenreihen. Die Cilienbulbi sind durch dunkleren Schatten hervorgehoben. Vergr. = B.

Fig. 4. Darmepithel von Scrobicularia piperata. Niedriger Saum mit langen Cilien. Die Zellkerne sind gut zu sehen. Man bemerkt, wie eine Zelle mit Kern ausgestossen wird. Vergr. = B.

Fig. 6. Epithel der Magendecke von Ophioderma longicaudata (Triest). Stäbchensaum hoch. Knöpfchen nicht sichtbar. Cilien spärlich, dünn, aber länger als der Saum. Epithel mit zweierlei Zellen. Vergr. = 400.

Fig. 7. Darmepithel von Arenicola marina. Niedriger Saum mit zwei scharfen Punktreihen. Cilien sehr lang, nach dem Absterben mit Knöpfchen am freien Ende. Vergr. = 800.

Fig. 8. Schema der verschiedenen Flimmerapparate.

Johannes Frenzel: Zum feineren Bau des Wimperapparates.

Fig. 10. Darm von Littorina littorea mit einer Zellart. Hoher Saum mit drei deutlichen Knöpfchenreihen, von denen die oberste am schärfsten. Haarbulbi punktförmig distinkt. Cilien kurz. Im oberen Zellteil erkennt man eine Streifung. Vergr. = B.

Fig. 11. Magengegend von Littorina. Die Fussklötzen dicker als die Stäbe. Cilien gleichfalls kurz. Halbschematische Darstellung. Vergr. = 2 × B = ca. 12- bis 1300.

Fig. 12. Dasselbe Präparat nach dem Absterben. Die Wimpern sind umgeknickt. Die Nebenknöpfchen werden deutlicher, während die oberen verschwinden. Vergr. = 2 × B.

Fig. 13. Durch Maceration isolirte Zellen aus dem Darm von Aplysia punctata (Triest). Bei a sieht man nur noch die Fussklötzen, bei c die ganzen Stäbchen. K = Kern; f k = Fettkugel. Vergr. = B.

Fig. 15. Cylinderzellen von Philine aperta (Triest). Freiwillig isolirt. Hoher Saum, lange Cilien. Vergr. = B.

Fig. 16. Darmepithel von Doris tuberculata (Triest). Zweierlei Zellarten. Die oberen Knöpfchen nicht gesehen. Vergr. = B.

Fig. 17. Mitteldarmzelle einer Fliegenlarve. Der Härchensaum mit oberen Knöpfchen. Der kreisrunde kolossale Kern enthält einen Nucleolus, welcher wieder zwei andere Körper beherbergt. Ferner sieht man im Kern die bekannten wurstförmigen Stränge. Der basale Zellteil ist längsgestreift durch dickere und dünnere parallele Fasern. Vergr. = B.

Fig. 18. Riesendarmzelle von der Larve von Teuthredo salicis. Der Saum besteht aus langen feinen Haaren, die auf kleinen Knöpfchen sitzen. Der Zellkern enthält mehrere Kernlecken (Nucleolide) und zahlreiche „Kerngranula“. Auch hier ist eine basale Streifung im Zellleib sichtbar. Vergr. = B.
Ueber ein Sarcom aus epithelähnlichen Zellen lymphoiden Ursprungs.

Von

Prof. Jos. Schöbl in Prag.

Hierzu Tafel IX.

Vorerst sei es mir vergönnt diese Publikation eines exquisit pathologischen Falles in diesem Archiv, welches in der Regel für normale mikroskopische Anatomie bestimmt ist, zu erklären. Das genaue histologische Studium der eben zu beschreibenden Neubildung führte mich zu so überraschenden Thatsachen, dass ich mir einzubilden wage, dass dieselben auch für die normale Histo- logie eine grosse Tragweite haben dürften.

Vorerst handelt es sich um eine im wahren Sinne des Wortes paradox Neubildung. Es ist eine Geschwulst, die vom unteren Lide ausgeht, bestehend aus Zellen mit spärlicher Zwischensubstanz und zahlreichen Blutgefässen, welche ohne jegliches Bindegewebs-Gerüst unmittelbar zwischen den Geschwulstzellen verlaufen; eine Geschwulst, welche ungemein rasch wuchse und heteroplastisch von einem Organ auf das andere übergreift, welche nach erfolgter scheinbar radikaler Entfernung (durch Exenteratio orbitae samt Abtragung des Unterlides) überraschend schnell zum lokalen Recidive führt, welche mit wahrer tropischer Euppigkeit wuchert, welche endlich wahrscheinlich zu Metastasen in der Leber führt und dem Leben der Patientin bald ein Ende macht, eine Geschwulst, welche somit sowohl klinisch als anatomisch als ein Sarcom angesprochen werden muss — und doch besteht die ganze

Wenn man nun bedenkt, dass die auf genauen Untersuchungen basirende Behauptung von Ziegler, Senftleben etc., dass sich die aus dem Blute ausgewanderten lymphoiden Zellen weiter entwickeln in epithelioide Formen und schliesslich in junges Bindegewebe umwandeln können, noch heute nicht allgemein anerkannt ist und von vielen Seiten geleugnet wird, so erscheint meine unzweifelhafte, auf jedem Schnitt klar zu demonstrierende Beobachtung, dass sich die aus den Blutgefässen ausgetretenen lymphoiden Zellen nicht nur zu epithelioiden Fibroblasten, sondern direkt zu grossen, von wahren Epithelzellen nicht zu unterscheidenden Zellen entwickeln, gewiss von hoher Bedeutung, und ich hätte es nicht leicht gewagt eine ähnliche Behauptung öffentlich auszusprechen, wenn mir nicht auf jedem der vielen Schnitte an zahllosen Stellen unumstössliche Beweise dieser meiner Behauptung zu Gebote stünden, welche mit Leichtigkeit von Jedem, der sie durchmustert, gesehen werden müssen.
Ueber ein Sarcom aus epithelähnlichen Zellen lymphoiden Ursprungs. 83

Was nun den Fall selbst anbelangt, so erlaube ich mir die Krankengeschichte und den klinischen Verlauf derselben nur in gedrängter Kürze mitzuteilen.

Auf Grundlage dieses anamnestischen Ergebnisses, im Hinblick auf das
rasche Wachsthum der Geschwulst, das bösartige heteroplastische Uebergreifen von einem Organ zum anderen, die weichelastische Consistenz, die glatte, flach högelige Oberfläche und den Gefäßreichthum, stellte ich die klinische Diagnose auf Sarcom, welches nach der sehr verlässlichen Anamnese mit grösster Wahrseheinlichkeit von der Conjunctiva des unteren Augenlides ausgegangen war.

Die Operation wurde, nach damaliger Sitte, ohne jegliche antiseptische Vorsichtsmaassregeln vorgenommen, die Orbita nach Stillung der Blutung mit gewöhnlicher Charpie tamponirt und der Tampon gleichfalls nach damals bei uns herrschendem Brauche durch mehrere Tage liegen gelassen. Bei Entfernung des Tampons war ich nicht wenig erstaunt, auf ungewohnte Hindernisse zu stossen und die Patientin über nicht gewöhnliche Schmerzen klagen zu hören.

Eine kleine, mit der Scheere entfernte Partie des Tampons zeigte die Charpiefädern mit einer grauröthlichen Masse durchsetzt.

Die sofort vorgenommene flüchtige mikroskopische Untersuchung ergab zwischen den Charpiefädern eine zahllose Menge lymphoide Zellen.

Die Entfernung des Tampons war schwierig und für die Patientin äusserst schmerzhaf und musste stellenweise mit Benützen von Messer oder Scheere stattfinden.

 Wenige Tage nachher zeigten sich am Grunde der Orbita abermals Wucherungen, welche sich bald als ein üppig wachsendes Recidiv der Neubildung herausstellten, binnen wenigen Wochen die ganze Orbita erfüllte und später aus derselben hervorzuquellen begann. Zu einer Wiederholung der Operation liess sich Patientin um keinen Preis mehr bewegen und verlangte, wenig zufrieden mit unserem Heilerfolge, ungestüm die Entlassung aus der Anstalt in ihre Heimath, welche ihr selbstverständlich bewilligt werden musste.

Von dem oberwähnten Landärzte habe ich später in Erfahrung gebracht, dass sie nach einigen Monaten nach furchtbaren Leiden ikterisch zu
Ueber ein Sarcom aus epithelähnlichen Zellen lymphoiden Ursprungs. 85

Grunde gegangen sei, woraus ich den Schluss zog, dass es sich wahrscheinlich um eine Metastase in der Leber gehandelt haben dürfte.

Das durch die Operation gewonnene Präparat, so wie Theile des Tampons wurden sorgfältig aufbewahrt erst in Müller'scher Flüssigkeit, später ausgewaschen und in Alcohol conservirt.

Schon die grobe anatomische Untersuchung hat somit die klinische Diagnose auf Sarcom des Unterlides bestätigt.
Die genaue histologische Untersuchung ergab, dass die ganze Neubildung aus dichtgedrängten zelligen Elementen, spärlicher Interzellularausmitz und neugebildeten Blutgefässen besteht. Was die zelligen Elemente anbelangt, so sind es zunächst grosse Zellen, welche vollständig Epithelzellen gleichen, und welche die Hauptmasse der Neubildung constituiren. Ihre Grösse schwankt zwischen 25—35 μ, ja einzelne werden sogar noch grösser.

Sie enthalten deutliche Kerne, deren Grösse 12—16 μ beträgt, und Kernkörperchen 5,5—6,5 μ gross (Fig. 2). Einzelne enthalten zwei Kerne, selten finden sich mehrkernige Elemente (bis 5 Kerne habe ich beobachtet). Auch finden sich einige, die einen grösseren Kern mit zwei Kernkörperchen enthalten.

Die Gestalt dieser Zellen ist im höchsten Grade polymorph und bizarr. Man findet alle nur denkbaren Formen, rundlich, oval, dreieckig, rhombisch, langgestreckt in verschiedene Zipfel und Zacken ausgezogen u. s. w.

Als zweiter wichtiger Bestandtheil der Geschwulst erscheinen kleine runde Zellen lymphoider Form, Durchschnitt 5,3—5,5 μ gross. Sie durchsetzen regelmässig die ganze Geschwulst zwischen den früher erwähnten grossen epithelähnlichen Zellen und zwar so, dass sie in der Gegend der Gefässe, aus denen sie offenbar stammen, am dichtesten sind und weiter, der Entfernung entsprechend, sparsamer werden, jedoch an keiner Stelle der ganzen Geschwulst fehlen, vielmehr in der angegebenen Weise ganz gleichförmig und regelmässig verteilt sind (Figg. 1 und 2).

Es erscheint somit die ganze Geschwulst aus grossen epithelähnlichen Zellen aufgebaut, welche mehr oder weniger gleichmässig von lymphoiden Rundzellen durchsetzt sind.

Das dritte zellige Element bilden die zahlreichen Übergangsformen zwischen den genannten beiden Zellenformen. Von diesen Übergangszellen finden sich alle möglichen Stadien. Neben reinen Rundzellen und solchen, welche in Theilung begriffen sind, finden sich andere, bei denen man nur unklar mit Immersionssystemen einen schwachen protoplasmatischen Saum unterscheiden kann. Dann kommen Formen, bei welchen der Saum schon deutlicher ist, und endlich solche, wo er breiter und breiter wird; einzelne haben einen bisquitförmigen, einzelne einen nierenförmigen Kern, manche haben zwei Kerne. Endlich findet man solche, wo bereits das
Ueber ein Sarcom aus epithelähnlichen Zellen lymphoiden Ursprungs. 87

Kernkörperchen angedeutet ist und die schon ganz den epithel-artigen grossen Zellen gleichen, nur in verjüngtem Maassstabe. Dann finden sich wieder grössere und grössere bis zur normalen Grösse der epithelartigen, die Geschwulst hauptsächlich constituirenden Zellen.

Alle diese Uebergangsformen von der lymphoiden Zelle bis zur grossen, von wahren Epithel nicht zu unterscheidenden Zelle finden sich überall und gleichmässig durch die ganze Neubildung vertheilt, so dass ich sie an jedem der vielen Hunderte von Schnitten, die ich angefertigt habe, und an jeder Stelle dieser Schnitte vorgefunden habe und überall die einzelnen Uebergangsstadien genau studiren konnte (Fig. 1 und 2). Die intercellulare Substanz ist eine im Ganzen sehr spärliche und erschien mir an einzelnen Stellen bei starken Immersionssystemen (Seybert IX) granulöser, an anderen Stellen mehr retikulärer, an anderen Stellen wieder fibrillärer Natur zu sein, doch will ich nicht entscheiden, wie viel davon präexistirender Struktur ist und was durch das Erhärtungsverfahren entstanden ist.

Die neoplastischen Blutgefässen durchsetzen mehr weniger gleichmässig die ganze Geschwulst und bilden weitmaschige Netze, wie ich sie in vielen anderen Sarcomen injirirt habe; nur an jenen Stellen, die der regressiven Metamorphose verfallen sind, fehlen sie. Fast sämmtliche neoplastische Blutgefässen, ebenso wie die in der Umgebung der Geschwulst, sind von einem mehr oder weniger dichten Mantel oder Hofe von lymphoiden Zellen umgeben (Fig. 1), und man kann an zahlreichen Stellen bei einiger Ausdauer in der Beobachtung Zellen finden, die eben im Begriffe sind durch die Wandungen der Gefässe durchzutreten.

Aus dem mitgetheilten Befunde schliesse ich, dass die lymphoiden Zellen überall aus den Gefässen austreten, sich zwischen den Elementen der Geschwulst gleichmässig vertheilen, vermehren, allmählich vergrössern und umwandeln, bis sie zu jenen grossen, die Geschwulst constituirenden, von Epithelien nicht zu unterscheidenden Zellen hervorwachsen und auf diese Weise einzig und allein das rapide Wachsthum der ganzen Geschwulst bewerkstelligt haben.

Mit allergrösster Wahrscheinlichkeit lässt sich weiter schliessen,
dass die ganze Geschwulst ursprünglich auf gleiche Weise entstanden ist.

Ob jedoch das ursprüngliche Knötchen am Lide schon diesen Geschwulstcharakter an sich getragen hat oder ob es ursprünglich mehr benigner Natur war und ob es erst durch die anfängliche reizende Behandlung einen solchen Charakter angenommen hat, das lässt sich freilich nicht behaupten, sondern nur muthmassen.

Dagegen erklärt sich hiedurch die Durchwachsung der Charpiefäden des Tampons mit Rundzellen, sowie das durchaus üppige, rasche Wachsthum der Recidivgeschwulst.

Die Geschwulst hat, wie bereits eingangs erwähnt wurde, einen paradoxen histologischen Charakter.

Das klinische Bild, der ganze Habitus der Geschwulst und die feineren Strukturverhältnisse entsprechen vollkommen dem Sarcom, und aufgebaut ist sie wiederum aus Zellen, die wir von wahren epithelialen Zellen nicht unterscheiden können und wie wir sie nur bei Carcinomen vorzufinden pflegen.

Noch wichtiger jedoch erscheint die keinen Zweifel gestattende Beobachtung der Umwandlung lymphoider aus den Blutgefässen ausgewanderter Zellen in die grossen epithelartigen Geschwulstzellen.

Wenn jemand den Einwand machen wollte, dass das Nebeneinanderlagern der verschiedenen Übergangsformen nicht die Entstehung einer Form aus der anderen beweise, so könnte dies wohl seine Berechtigung haben, wenn es sich nur um eine oder mehrere Beobachtungen an verschiedenen Stellen der Geschwulst handeln würde. Da sich jedoch diese Formen in der ganzen Geschwulst überall mit grosser Regelmässigkeit vorfinden und sich überall alle Übergangsformen nachweisen lassen, so muss ein zufälliges Nebeneinandersein dieser Gebilde ausgeschlossen werden. Dieselben Gründe sprechen gegen den Gedanken, die Rundzelleninfiltration als Folge einer zufällig hinzutretenden Entzündung der Geschwulst aufzufassen.

Schliesslich muss ich noch bemerken, dass ich bei den grossen, die Geschwulst constituirenden Zellen nie Theilungsvorgänge beobachtet habe, was doch wohl sonst bei einer so rasch wachsenden Geschwulst an unzähligen Stellen der Fall sein müsste, wenn das
Über ein Sarcom aus epithelähnlichen Zellen lymphoiden Ursprungs: 89

Wachsthum derselben nicht in der von mir angegebenen Weise, durch Umwandlung von lymphoiden Zellen stattgefunden hätte.

Die sehr seltenen Befunde, wo an einer grossen Zelle zwei und mehrere Kerne gefunden werden (Fig. 2), müssen als riesenzellenartige Bildungen aufgefasst werden, bei denen nach in der Jugend der Zelle erfolgten einfachen oder wiederholten Kerntheilungen eine Protoplasmatheilung unterblieb.

Die bekannten Beobachtungen Ziegler's, Senftleben's, Tillmann's, ebenso wie die weniger bekannten schon früheren von Heydenhein, Schede, Aufrecht, Bizzozero, Marchand etc., nach welchen sich lymphoide Zellen in Fibroblasten und dann in junges Bindegewebe umzuwandeln im Stande sind, und welche Beobachtungen bis zur Stunde von Vielen, so z. B. von Samuel, Ewetzky, Weiss, Stricker, Böttcher, Baumgarten angezweifelt werden, erlangen durch meine Beobachtungen dieser hochinteressanten Geschwulst volle Bestätigung.

Doch gehen meine Beobachtungen noch weiter, indem sie die Umwandlung lymphoider Zellen in solche Zellen darthun, welche sich von epithelialen Zellen gar nicht unterscheiden lassen.

Ich will es vorläufig unterlassen, aus dieser einen Beobachtung alle möglichen Consequenzen zu ziehen, doch ergeben sich deren viele und schwerwiegende leicht von selbst.

Auch liegen mir neue, theilweise, wie es mir scheint, noch interessantere Beobachtungen vor, die ich mir demnächst mitzutheilen erlauben will, welche mich geradezu zwingen, trotz alles Widerstrebens die Entwicklung lymphoider Zellen zu Epithelzellen, ja sogar zu Drüsenzellen oder mindestens zu solchen Gebilden, die sich von Epithelzellen und Drüsenzellen nicht unterscheiden lassen, für möglich und thatsächlich bestehend zu halten.
Erklärung der Figuren auf Tafel IX.

Fig. 1 zeigt einen Theil der Geschwulst bei mässiger Vergrößerung. Seibert Objekt. VI. Okular I. — Die epithelartigen Zellen der Geschwulst von zahlreichen Rundzellen durchsetzt, in der Umgebung der Gefässe massenhaft ausgewanderte lymphoide Zellen, etwas weiter entfernt alle möglichen Uebergänge zwischen Lymphzellen und epithelartigen Zellen.

Fig. 2 zeigt einen kleinen Theil der Geschwulst bei starker Vergrößerung. Seibert Immers. VIII. Okular 2. — Man sieht die grossen epithelartigen Zellen der Geschwulst teilweise mehrkernig, teilweise mit einem Kern und zwei Kernkörperchen, zwischen denen die theils fibrilläre, theils molekuläre, theils retikuläre spärliche Zwischensubstanz eingelagert ist, dann zwischen den grossen epithelartigen Zellen zahlreiche Lymphoidzellen, sowie alle möglichen Stadien der Vermehrung dieser Zellen und endlich alle Uebergangsstadien von lymphoiden Zellen zu den grossen epithelartigen Zellen.
Ueber den Bau des Corpus ciliare und der Iris von Säugethieren.

Von

Dr. med. A. Dostoiewsky aus St. Petersburg.

Hierzu Tafel X u. XI.

In vorliegender Arbeit sind die Ergebnisse von Untersuchungen niedergelegt, die ich im Berliner anatomischen Institut über den Bau des Corpus ciliare und der Iris bei Säugethieren im Winter 1885/86 angestellt habe. Das reichliche Material zu diesen Untersuchungen wurde mir von Herrn Dr. H. Virchow, dem ich hierfür meinen aufrichtigsten Dank ausspreche, zur Verfügung gestellt. Abgesehen vom Menschen, habe ich die Augen folgender Thiere untersucht:

<table>
<thead>
<tr>
<th>Tier</th>
<th>Lateinisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cynocephalus mormon (Mandrill)</td>
<td>Lutra vulgaris</td>
</tr>
<tr>
<td>Cynocephalus sphinx (Pavian)</td>
<td>Phoca vitulina</td>
</tr>
<tr>
<td>Macacus spec.</td>
<td>Cervus porcinus</td>
</tr>
<tr>
<td>Felis domestica</td>
<td>— Alces</td>
</tr>
<tr>
<td>— guttata</td>
<td>— Aristotelis</td>
</tr>
<tr>
<td>— Leo</td>
<td>— dama</td>
</tr>
<tr>
<td>Canis domestica</td>
<td>Antilope Beisa</td>
</tr>
<tr>
<td>Ursus Arctos</td>
<td>— Damalis</td>
</tr>
<tr>
<td>— Nylgau</td>
<td>Halmaturus Bonetti</td>
</tr>
</tbody>
</table>

Sämtliche Augen, die in meine Hände gelangten, wurden verschiedenen lange Zeit in Müller'scher Flüssigkeit aufbewahrt:

Auf einem meridionalen Schnitte aus dem Auge eines Wiederkäuers oder Einhufers sieht man bei schwachen Vergrösserungen und schon mit unbewaffnetem Auge, dass in einer gewissen Entfernung vor der Ora serrata retinae die Chorioidea von der Sclera sich abzuheben beginnt, wodurch sich zwischen beiden ein dreieckiger Raum bildet, der mit seiner Basis nach der vorderen Kammer hin gerichtet ist. Dieser Raum ist von besonderen Trabekeln oder Balken ausgesüßt, durch welche das ganze Dreieck ein weissliches oder graues Aussehen erhält. Seine Grenzen sind: aussen die Sclera, innen die Fortsetzung der Chorioidea oder — wie wir diesen Theil nennen wollen — die „Grundplatte des Corpus ciliare“, endlich vorn eine Reihe von Balken, die zwischen der Iriswurzel oder der vorderen Fläche der ciliaren Randpartie der Iris und dem Randtheil der Cornea ausgespannt sind. Diesem Dreieck und den in seine Zusammensetzung eingehenden Theilen hat man verschiedene Bezeichnungen gegeben. Wenn man in einem herausgeschnittenen Segment des Auges die Iris von der Cornea abdrängt, so spannen sich die Balken, welche das Dreieck von der vorderen Kammer abgrenzen, wie Saiten an. Diese mit unbewaff-
Ueber den Bau des Corpus ciliare und der Iris von Säugethieren.

Netem Auge sichtbaren Balken hat Hueck Ligamentum pectinatum genannt. Später fing man jedoch an, diese Bezeichnung nicht nur auf jene Balken, sondern auch auf das dahinter gelegene, das Dreieck ausfüllende Gewebe anzuwenden. Iwanoff und Rollet haben zuerst diese Gebilde auseinander gehalten und die Balken, welche an die vordere Kammer grenzen, Irisfortsätze, den dahinter gelegenen Raum Fontana'schen Raum genannt. Derselben Bezeichnungen bedient sich auch Schwalbe). Da aber die Balken bei manchen Thieren in mehreren Reihen angeordnet sind, und Hueck unter Ligamentum pectinatum lediglich die erste dieser mit unbewaffnetem Auge sichtbaren Balken gemeint hatte, so sind streng genommen, worauf Heisrath aufmerksam macht, die Bezeichnungen Ligamentum pectinatum und Irisfortsätze nicht identisch. Das ganze Dreieck nennt endlich Gerlach Ligamentum anulare bulbi. Im Folgenden wird diese Gerlach'sche Bezeichnung beibehalten, dazu die der Irisfortsätze für die vorderen Balken, wobei jedoch ausdrücklich bemerkt wird, dass sich nur die vordere Reihe dieser Balken am Iris ansetzt, während die hinteren an die Grundplatte des Corpus ciliare treten.

In den von der Sclera und der Grundplatte des Corpus ciliare begrenzten Raum ragt von der Sclera her ein Wulst hinein, der mitunter einen hohen Grad von Entwicklung erreicht, zuweilen dagegen so schwach bleibt, dass er kaum den Namen eines Wulstes verdient. Er kann colossale Dimensionen erlangen und sich bis an die Grundplatte ausdehnen. Dieser Wulst theilt den in Rede stehenden Winkel in zwei Theile; an seine hintere Seite setzen sich die Fasern des Ciliarmuskels an und der ganze dahinter befindliche Raum ist von diesem Muskel eingenommen. Vor dem Wulst liegt ein besonderes Netzwerk, bestehend aus Fasern verschiedener Dicke, die in verschiedener Richtung verlaufen und eine verschiedene Structur besitzen. Das hinter den Irisfortsätzen gelegene Gewebe zerfällt vorwiegend in zwei Abschnitte. Der unmittelbar an die Sclera grenzende Abschnitt hat eine besondere

4) Gerlach, J., Beiträge zur normalen Anatomie des menschlichen Auges. 1880.
A. Dostoiewsky:

Ich beginne mit der Beschreibung des Ligamentum annulare bulbi und zwar bei denjenigen Thieren, bei welchen es den Höhepunkt seiner Entwicklung erreicht, d. i. bei den Wiederkäuern und den Einhufern.

Die Irisfortsätze beim Pferde sowohl als bei den Wiederkäuern sind in mehreren hinter einander liegenden Reihen angeordnet, wobei in der Mehrzahl der Fälle, wie Schwalbe hervorgehoben hat, die erste Balkenreihe nicht in einer meridionalen Ebene mit der zweiten liegt, so dass sich auf Meridionschnitten entweder nur Balken der ersten oder nur solche der zweiten Reihe finden. Allein in glücklichen Fällen sieht man unter Umständen auf einem Schnitt Balken, die in mehreren hinter einander liegenden Reihen angeordnet sind. An Schnitten letzterer Art ist es namentlich bequem, die Insertion dieser Balken an ihren beiden Enden zu studiren.

Die Frage der Befestigung der Balken an der äusseren Augenhaut hängt mit der Endigungsweise der Membrana Descemetii innig zusammen.

Vor den Untersuchnngen von Schwalbe pflegte man zu behaupten, dass die Membrana Descemetii mit einem scharfen Rande

Ich verfügte über eine ziemliche Anzahl Augen von Wiederkäuren und Einhufern. Bei allen diesen Thieren ist die Art, wie sich die Irisfortsätze an die äussere Augenhülle inseriren, ziemlich

³) Leçons d’anatomie générale Cornee. 1881.
⁵) Cornea in Gräfe und Sämiscb Handbuch der Augenheilkunde. I. 1874.
die dieselbe und lässt sich in folgender Weise schildern (die beigegebene Figur 1 stellt einen Schnitt aus dem Auge von Antilope Danalis dar). Der vordere Balken, der an die Membrana Descemetii herantritt, dringt durch die letztere hindurch und geht in das Gewebe der Cornea über. Die Membrana Descemetii selbst zieht nach der Iris hin, indem sie den Balken allseitig in Gestalt einer Scheide umhüllt, und endigt, allmählich sich verjüngend, in einer bestimmten Entfernung. Zuweilen erstreckt sich dieser Mantel bis dicht an die Iris. Hinter dem ersten Balken setzt sich die Membrana Descemetii nach hinten fort, wo sie einen zweiten Balken trifft, denselben mit einem Mantel versehen, aber ihn nicht so weit wie den ersten begleitend. Eine ähnliche Scheide erhält auch der dritte Balken. Hinter dem letzteren wird die Membrana Descemetii dünner und dünner und hebt sich gleichzeitig von der Cornea etwas ab. In dem zwischen ihr und der Cornea propria gebildeten Winkel entspringen die Fasern des elastischen Ringes. Davon, dass die Balken die Membrana Descemetii durchsetzen, kann man sich auch an Tangentialschnitten überzeugen. Aus in Celloidin eingebetteten Präparaten lassen sich bei einiger Mühe Schnitte gewinnen, welche durch die Ebene der Membrana Descemetii gehen, besonders bei solchen Thieren, bei welchen die Membran dick ist, wie z. B. beim Pferde. Auf diesen Schnitten sieht man in der Membrana Descemetii runde Öffnungen — entweder leer oder von querdurchtreten den Fasern bindegewebiger Balken ausgefüllt. Die Entfernung von der Stelle, wo die Membrana Descemetii vom ersten Balken durchsetzt wird, bis zu der Stelle, wo sie ihr Ende findet, d. h. ihr charakteristisches hyalines Aussehen verliert, ist an Meridionschnitten zuweilen bedeutend und erreicht 1 mm.

An Meridionschnitten sieht man also, dass die Membrana Descemetii mit einem scharfen Rande endigt. Meridionschnitte allein genügen jedoch nicht, um zu einem deutlichen Verständnisse dieses Verhältnisses zu führen. Studirt man die Membrana Descemetii von der Fläche, nachdem man sie von dem darunterliegenden Gewebe mittelst einer Pinzette abgelöst hat, so kann man beobachten, dass sie in einer gewissen Entfernung vom Rande Öffnungen besitzt, durch welche die oben beschriebenen Irisfortsätze hindurchgehen. Der Rand selbst bildet keine gerade Linie, sondern sieht gezackt aus, indem er in verschiedenen Meridianen

1) Auf der Figur nicht abgebildet.
A. Dostoiewsky:

einer Membran ausspannt. Dies kommt namentlich bei den Thieren vor, bei welchen die Irisfortsätze sehr nahe neben einander gelagert sind. Wenn man z. B. aus dem Auge des Känguru eine fortlaufende Reihe von Schnitten anfertigt, und dann die Schnitte, welche durch die Irisfortsätze gehen, mit denen, welche zwischen letztere gefallen sind, vergleicht, so sieht man, dass im ersteren Falle das Endothel längs der Irisfortsätze von der hinteren Fläche der Cornea bis an die vordere Fläche der Iris zu verfolgen ist; im zweiten Falle, wann der Schnitt zwischen zwei Irisfortsätzen gegangen ist, trifft man das Endothel als eine scharfe kernführende Linie.

Der dreieckige Raum hinter den Irisfortsätzen, zwischen Sclera und Grundplatte des Corpus ciliare, ist, wie bereits erwähnt, von einem besonderen aus Balken bestehenden Gewebe ausgefüllt. Schon eine oberflächliche Beobachtung genügt, um zu erkennen, dass dieser Theil des Ligamentum annulare bulbi in zwei Abschnitte zerfällt.

Oben wurde angedeutet, dass die Membrana Desceenctii hinter den Irisfortsätzen allmählich sich verjüngt und gleichzeitig von der Sclera sich abhebt; in dem auf diese Weise entstandenen Dreieck beginnt keilförmig eine Gewebmsasse, die Iwanoff und Rollet\(^1\)) engmaschiges Gewebe, Schwalbe\(^2\)) Grenzring genannt hat. Dieses Gewebe setzt sich aus Fasern zusammen, die aus schliesslich in circulatorärer Richtung verlaufen und unmittelbar an der Sclera einen Ring bilden. Auf meridionalen Schnitten sind diese Fasern demnach quer durchtrennt. Die von ihnen gebildete Gewebspartie sieht auf dem Durchschnitt ungefähr dreieckig aus. Sie beginnt, wie bereits erwähnt, mit einem scharfen Rande, zieht, indem sie breiter wird, nach hinten und endigt dann, schnell schmäler werdend, vor dem oben erwähnten Sclerawulst. Nach aussen grenzt dieselbe, wie schon angegeben, an die Sclera, nach innen geht sie allmählich in die Fasern über, welche den Rest des Fontana’schen Raumes ausfüllen. Die Dimensionen dieses prismatischen Ringes sind bei verschiedenen Thieren verschieden. Anlangend seinen feineren Bau, so ist die centrale Partie aus feinsten Fäden mit allen Eigenschaften der elastischen Fasern zusam-

\(^1\) l. c.
\(^2\) l. c.
Ueber den Bau des Corpus ciliare und der Iris von Säugethieren. 99

Die Augen des Büffels haben eine andere Eigenthümlichkeit. Die Membrana Descemetii spaltet sich auf der hinteren Fläche der Cornea, noch lange bevor sie den Winkel erreicht hat, in zwei Blätter a und b (Fig. 5), zwischen welchen ein Gewebe liegt, welches dem der Cornea propria analog ist. Das innere Blatt
grenzt nach wie vor an die vordere Kammer, das äussere dagegen legt sich zwischen die Lamellen der Cornea propria. Nach dem Iriswinkel hin verdünnt sich allmählich das innere Blatt und endigt schliesslich mit einem scharfen Rande, während das äussere sich weiter fortsetzt, so dass in diesem Abschnitt die vordere Grenze der vorderen Kammer nicht durch die Membrana Descemetii, sondern durch das Gewebe der Cornea gebildet wird. Das Verhältniss der Membran zu den Irisfortsätzen ist hier das nämliche wie bei den anderen Thieren, mit dem einzigen Unterschiede, dass die Irisfortsätze zunächst die Partie der Cornea, welche die vordere Kammer von der Membrana Descemetii scheidet, zu durchsetzen haben, um in letztere einzudringen. Diese liefert, wie aus der Figur ersichtlich, Scheiden für die Irisfortsätze.

Beim Löwen ist der Annulus ciliaris bulbi folgendermaassen eingerichtet. Wenn man mit blossem Auge den Winkel zwischen Sclera und Grundplatte betrachtet, so sieht man zunächst bei dem Versuche, die Iris von der Cornea zu trennen, wie sich eine Anzahl dünner Balken von bedeutender Länge anspannt. Diese Balken sind in mehreren Reihen angeordnet und auf verschiedene Weise unter einander verbunden (Fig. 6 a). Weit hinter ihnen folgt ein dreieckiger Raum (b e d), der von einem filzartigen Gewebe ausgefüllt ist. An Meridionalschnitten kann man sich überzeugen, dass die vorderen Balken die Membrana Descemetii noch weit vor ihrer Endigungsstelle durchsetzen. Weil die Balken ziemlich dünn gestellt sind und eine grosse Ausdehnung haben, so sieht man sie auf Meridionalschnitten in der Mehrzahl der Fälle nur in Gestalt von Bruchstücken. Dazwischen bleiben grosse Räume frei. Hinter der Ansatzstelle der ersten Balkenreihe zieht die Membrana Descemetii, ohne sich zu verdünnen, nach hinten und geht erst in einer Entfernung von 1,5—2 mm in eine Anzahl Trabekeln über, die fächerförmig in der Weise auseinanderfahren, dass die einen mehr oder minder parallel mit der Sclera verlaufen, während die anderen nach der Grundplatte zu umbiegen und somit dieselbe Richtung wie die vorderen Balken einschlagen. Um indessen das Verhältniss der Membrana Descemetii zu diesen Balken festzustellen, bediente ich mich der häufig gebährten Methode des Lospräparirens einzelner Stücke der Membrana Descemetii mittelst der Pincette. Wenn man nämlich die vorn gelegenen Trabekeln durch leichtes Anziehen der Iris nach hinten zerreisst und
Ueber den Bau des Corpus ciliare und der Iris von Säugethieren. 103
dieses Lostrennen nach hinten weiter fortsetzt, so bietet das Filzwerk einen ziemlich bedeutenden Widerstand. Schneidet man dasselbe mit einem scharfen Scalpel an und entfernt die Iris samt der Grundplatte des Corpus ciliare, so lässt sich die Membrana Descemetii mit einer kleinen Pincette fassen und samt den mit ihr verbundenen Theilen von dem darunter liegenden Gewebe lostrennen. In einer gewissen Entfernung vom Rande der Membrana Descemetii erscheinen Bindegewebsbündel, die in radiärer Richtung verlaufen. Bei ihrem Austritt aus der Membran erhalten dieselben von ihr Scheiden, die anfangs dick sind, dann aber nach und nach dünner werden, in Folge dessen die Öffnungen zwischen den Balken immer grösser und grösster werden. Die Balken sind unter einander in verschiedener Weise verbunden und bilden ein weitmaschiges Netz. In den Maschen des letzteren, wo also keine Membrana Descemetii mehr vorhanden ist, sieht man immerhin unter Umständen eine ununterbrochene Schicht von Endothel, das sich demnach auf eine gewisse Strecke weiter fortsetzt als die Membrana Descemetii selbst. Hebt und senkt man den Tubus des Mikroskops, so kann man sich überzeugen, dass die erwähnten Bindegewebsbündel nicht in der Membrana Descemetii, sondern unter derselben liegen und aus dem Gewebe der Sclera entstehen. Mithin sind die den Winkel zwischen Sclera und Grundplatte des Corpus ciliare ausfüllenden bindegewebigen Balken keine direkte Fortsetzung der Membrana Descemetii; sie entstehen aus dem Gewebe der Sclera und erhalten von der Membrana Descemetii lediglich eine Scheide. Wie bereits erwähnt, fahren dieselben fächerförmig auseinander, dabei theilen sie sich in verschiedener Weise und zerfallen schliesslich in die sie zusammensetzenden feinsten Fäserchen. Die letzteren verbinden und verflechten sich auf das innigste und bilden das Filzwerk, welches fast den ganzen Winkel zwischen Sclera und Grundplatte ausfüllt. Wie wir weiter unten sehen werden, dringen in dieses Gewebe die Bündel des Ciliarmuskels ein, wobei eine Anzahl von ihnen daselbst auch endigt, so dass man die Verbindung von Muskelfasern mit Bindegewebsfasern, welche sich demnach als feinste Sehnen für den Ciliarmuskel darstellen, direct verfolgen kann.
Wenn wir die Einrichtung des Annulus ciliaris bulbi beim Löwen mit der Einrichtung desselben bei den Wiederkäuern vergleichen, so bemerken wir, dass beim Löwen die den Irisfort-
sätzen der Wiederkäuer entsprechenden Balken in mehreren Reihen angeordnet sind und nicht senkrecht zur Cornea stehen, wie dies bei den Wiederkäuern der Fall zu sein pflegt; mit der Cornea einen nach hinten offenen spitzen Winkel bildend, laufen sie rückwärts und treten zur Iris und Grundplatte. Daher auch ihre viel größere Ausdehnung als bei den Wiederkäuern.

Anlangend den feinen Bau der dicken vorderen Balken, so bestehen dieselben aus deutlich fibrillärem Bindegewebe, sind bedeutend dünner als bei Wiederkäuern und sind von einer Endothelhaut bekleidet. Sie zeichnen sich von den ihnen analogen Irisfortsätzen der Wiederkäuer durch ihre vollkommen glatten und regelmässigen Contouren aus und besitzen in ihrer gesammten Länge dieselbe Dicke. Die hintere Partie des Anulus ciliaris ist beim Löwen, wie bereits erwähnt, von einem dichten Filzwerk ausgestattet, welches dadurch zu Stande kommt, dass die dickeren Bindegewebsbalken hinten in die sie zusammensetzenden Fäserchen zerfallen, und die letzteren in der mannigfaltigsten Weise sich unter einander verbinden und verflechten. Die im Iriswinkel des Löwen vorkommenden Zellen sind folgende: 1) Bindegewebszellen, in der hinteren engmaschigen Partie des Corpus ciliare gelegen, von sehr wechselnder Form: verzweigt, spindelförmig etc. Sie stellen die unmittelbare Fortsetzung der Endothelzellen, welche in Gestalt eines Mantels die vorderen Balken einhüllen, dar. 2) Pigmentzellen. Dieselben zerfallen ihrerseits in zwei Arten, die am besten als unbewegliche und bewegliche zu bezeichnen sind. Die Zellen der ersten Art liegen in den bindegewebigen vorderen Balken unter der Endothelscheide unmittelbar am Bindegewebe; ihre Form ist platt, zuweilen verzweigt. Sie haben einen sehr kleinen Kern, die Farbe der Pigmentkörner ist hellgelb. Die Zahl dieser Zellen ist verhältnismässig gering und im Gegensatz zu den Irisfortsätzen der Wiederkäuer kann man hier niemals beobachten,
dass die Bindewebensbalken allseitig von Pigmentzellen umgeben seien. Zuweilen bleiben jene auf einer grossen Strecke vollkom-
men frei von Pigment. Die zweite Art von Zellen, die wir als be-
wegliche bezeichnet haben, findet sich in allen Abschnitten des
Annulus ciliaris vor und besitzt eine sehr wechselnde Gestalt, die
vorwiegend von dem Orte abhängt, an welchem die Zellen gelagert
sind. Die allerhäufigste Form — die vollständig runde — kommt
dann vor, wenn die Zellen ganz frei zwischen den Balken liegen
und von den umgebenden Theilen nicht gedrückt werden; im Ge-
biete der vorderen Balken liegen sie zuweilen der Aussenseite der
Balken an, und in solchem Falle sind die letzteren von zwei Arten
Pigmentzellen — solchen, die unter dem Endothel, und solchen,
die nach aussen von demselben sich befinden — begleitet. Diese
unterscheiden sich von jenen sowohl ihrer Form nach, indem sie
halbkugelig zu sein pflegen und niemals platt, als auch nach der
Farbe ihrer Pigmentkörner, die gewöhnlich etwas dunkler sind
als in den unter dem Endothel gelegenen Zellen. In der hinteren
Partie des Annulus ciliaris, im Gebiete des Filzwerkes, werden
die Pigmentzellen von den umgebenden Theilen gedrückt und er-
halten dadurch eine mannigfaltige Gestalt: eine runde, ausge-
zogene, spindelförmige, verästelte u. s. w. Indessen kann man
unter Umständen solche Zellen vollkommen frei liegend und mit
Fortsätzen versehen beobachten. Diese Formen scheinen auf eine
active amoeboide Bewegung der Pigmentzellen hinzuweisen. Auf
derartige Zellen, die ihre Gestalt je nach den äusseren Umständen
ändern, haben schon B e r g e r und K o g a n e i aufmerksam gemacht.
Der zuletzt genannte Autor hat solche Zellen in der Iris der Katze
beobachtet und als Tapetalzellen bezeichnet. Ich habe solche Zellen
nicht nur bei Repräsentanten aus der Familie der Feliden, sondern
auch bei anderen Raubthieren, z. B. beim Ursus labiatus und bei
manchen Hirscharten gefunden. Abgesehen von den beschriebenen
Zellen kommen beim Löwen in allen Abschnitten des Annulus
ciliaris in grosser Anzahl 3) Leukocyten vor. Dieselben liegen
gewöhnlich, gleich den pigmentirten Wanderzellen, im Gebiete der
vorderen Balken der Aussenseite der letzteren an. Im hinteren
Theile des Annulus ciliaris, im Gebiete des Filzwerkes, begegnet
man Muskelfaserzügen, die hier auch endigen, andererseits gehen
sie direct in den Musculus ciliaris über. Die feinsten Fasern des
Filzwerkes verhalten sich demnach wie Sehnen für die Muskelfasern.
Ganz ähnlich wie beim Löwen ist der Annulus ciliaris bulbi auch bei einem anderen Repräsentanten der Gattung Felis — bei Felis guttata — eingerichtet.

Beim Seehunde erstreckt sich der Annulus ciliaris ungewöhnlich weit nach hinten. Die Membrana Descemetii ist ausserordentlich dünn — sie erreicht 3—4 μ. Wie bei den anderen Thieren beginnen auch hier die ersten Irisfortsätze weit vor dem Ende der Membrana Descemetii und erhalten von ihr Scheiden, welche sie jedoch auf eine sehr geringe Strecke begleiten. Die Mehrzahl der Balken beginnt hinter der durchsichtigen Partie der Membrana Descemetii. Mit einer ziemlich schmalen Basis anhebend gehen sie fächerförmig, wie Fig. 7 zeigt, nach allen Richtungen auseinander: 1) nach vorn — diese Fasern gelangen fast bis an den Rand der Iris, wie schon H. Virchow angegeben hat, 2) nach der Augenaxe hin, d. i. nach der Grundplatte des Corpus ciliare, 3) nach hinten, zwischen Grundplatte und Sclera. Allen diesen Balken kommt in ihrem gesamten Verlaufe dieselbe Dicke und dieselbe Struktur zu. Sogar in der hinteren Partie des Annulus ciliaris, wo die Balken gewöhnlich dünner werden und bei manchen Thieren in die sie zusammensetzenden Fibrillen zerfallen, behalten sie beim Seehund dieselbeDicke wie vorne. Sie bestehen aus deutlich fibrillärem Bindegewebe und besitzen eine Endothelscheide. Zwischen Scheide und Bindegewebe liegen Pigmentzellen, deren Zahl ausserordentlich gross ist, so dass sie die Trabekeln von allen Seiten umgeben. Die Zellen sind sehr gross, mit Fortsätzen versehen, beherbergen einen sehr kleinen Kern.

Bei einem anderen Wassersäugether, das ich untersucht habe, bei der jungen Fischotter, ist die Membrana Descemetii ebenfalls ausserordentlich dünn, so dass bei schwächeren Vergrösserungen die hintere Fläche der Cornea nur von einer Endothelschicht bedeckt zu sein scheint, während sie bei starker Vergrösserung als scharfe Linie zwischen Endothel und Cornea propria sich darstellt. Die Fasern des Annulus ciliaris sind, wie aus Figur 8 ersichtlich, in der Weise angeordnet, dass ein oder zwei ziemlich dicke unmittelbar an die vordere Kammer grenzende Balken dort, wo die Membrana Descemetii aufhört, beginnen, in Richtung nach der Augenaxe verlaufen und an den Ciliarrand der Iris sich ansetzen; alle übrigen Balken ziehen in Gestalt eines an Breite zunehmenden Bündels nach hinten und dringen in den Ciliarmuskel ein, verhalten sich somit wie feine Sehnen für die Fasern des letzteren.

Anlangend die Frage, ob im menschlichen Auge den Irisfortsätzen der Wiederkäuern entsprechende Theile existiren, so sagt Waldeyer, dass in einzelnen Fällen auf Meridionschnitten in unmittelbarer Nachbarschaft mit der vorderen Kammer ein oder zwei grosse pigmentierte Balken mit grossen Maschenräumen vorhanden sind. Heisrath leugnet entschieden die Existenz solcher Maschenräume im Iriswinkel des menschlichen Auges. Ich habe

Musculus ciliaris.

Nachdem die vor dem Sclerawulste gelegenen Theile beschrieben sind, müssen wir uns nun den hinter demselben gelegenen zuwenden.

Der Sclerawulst selbst besteht aus dichtem Bindegewebe, welches gegen die Selera hin, indem zahlreiche Sehnenfäden des sich hier inserirenden Ciliarmuskels zur Verstärkung beitragen, an Mächtigkeit zunimmt. Der Sclerawulst ist, wie bereits hervorgehoben, bei verschiedenen Thieren verschieden stark entwickelt; bei den einen ausserordentlich stark, so dass er die Grundplatte des Corpus ciliare erreicht — wie z. B. beim Gnu —, bei anderen kaum bemerkbar; immerhin aber ragt der Theil der Selera, wo
die Mehrzahl der Fasern des Ciliarmuskels sich ansetzt, stets in den Raum des Annulus ciliaris hinein. Vor dem Sclerawulste sind alle Theile des Corpus ciliare innig mit der Sclera verbunden, hinter ihm hängt die mittlere Augenhaut kaum noch mit der Sclera zusammen. Hebt man daher die Chorioidea von der Sclera in der Richtung von hinten nach vorn ab, so trifft man keinen Widerstand, bis man dicht an den Sclerawulst herangekommen ist, wo dann eine feste Verbindung durch die Insertion des Ciliar-
muskels existirt. In Folge des Umstandes, dass der Sclerawulst bei Wiederkäutern und Einhufern relativ weit mehr hinten liegt als beim Menschen, wo er die hintere innere Wand des Schlemm-
schen Canals bildet, steht bei den zuerst genannten Thieren die mittlere Augenhaut auf einer grösseren Strecke mit der äusseren in Verbindung als beim Menschen und bei Affen.

Der Ciliarmuskel des Menschen ist so ansführlich beschrieben, dass ich meinerseits nur wenige Worte hinzuzufügen vermag. In den von mir untersuchten Augen habe ich eine starke Schwankung in Bezug auf die Entwicklung der circulären Fasern oder des Müllers'schen Muskels gefunden; während derselbe in manchen Augen ungemäss stark entwickelt ist und dicke, durch Bindegewebe geschiedene Bündel repräsentirt, erscheint er in anderen Augen ungemäss schwach und ist die Gegend, wo sonst der Müllers'sche Muskel sich befindet, von Fasern eingenommen, die in meridionaler Richtung verlaufen. Da mir die Sehkraft der betreffenden Augen leider unbekannt war, so vermag ich nichts bestimmtes über das bekannte Ivanoff'sche Gesetz auszusagen, wonach bei Myopen der Müllers'sche Muskel fast vollkommen fehlen und bei Hyper-
metropen die Höhe seiner Entwicklung erreichen soll.

Im Brücke'schen Muskel ist die Menge des zwischen den Fasern gelegenen Bindegewebes bedeutenden Schwankungen unter-
worfem; in manchen Augen kaum wahrzunehmen, erscheint es in anderen außerordentlich stark.

Beim Affen ist der Ciliarmuskel ganz ähnlich eingerichtet und besteht aus ganz ähnlichen Theilen wie beim Menschen, d. h. es sind sowohl meridionale als circuläre Fasern vorhanden, letztere an derselben Stelle gelegen wie beim Menschen. Unter den von mir untersuchten Augen der drei schon genannten Affenarten war der Müllers'sche Muskel bei Cynocephalus mormon nicht besonders kraftig, erreichte dagegen bei Cynocephalus sphinx und bei Ma-
cacus die Höhe seiner Entwicklung. Aus der beigegebenen Figur 9 sieht man, dass seine Gestalt und die Anordnung seiner Fasern dieselben sind wie beim Menschen; d. h. bei sämtlichen von mir untersuchten Affen existiren circuläre Muskelfasern an der nämlichen Stelle wie beim Menschen. Meyer¹) hat bei Untersuchung der Augen eines Affen (Macacus nemertinus) keine circulären Fasern im Ciliarmuskel gefunden und behauptet aus diesem Grunde, dass jene bei den Affen überhaupt fehlen. Flemming²) machte auf die Voreiligkeit einer solchen Schlussfolgerung aufmerksam und findet seinerseits, auch bei Untersuchung nur eines Affen (Cercopithecus), dass der Ciliarmuskel hier ganz ähnlich wie beim Menschen eingerichtet ist.

¹) Virchow's Archiv. Bd. XXXIV. 1865.
³) l. c.

Iris.

Es liegt nicht in meiner Absicht, die Iris bei allen von mir untersuchten Thieren im Einzelnen zu beschreiben. Ich will nur die streitigen und bis jetzt noch nicht aufgeklärten Fragen berühren. Im Vordergrunde steht in dieser Beziehung diejenige Partie der Iris, die unmittelbar vor der Pars epiblastica iridis liegt und den Namen der hinteren Begrenzungshaut, der Bruch'schen Membran u. s. w. trägt. Bekanntlich beteiligen sich an der Beschreibung dieser Partie viele Autoritäten in der Histologie, allein bis zur Stunde ist es nicht festgestellt, was für einen Bau die hintere Begrenzungshaut habe, und welches ihre Bedeutung für das Auge sei. Während die Einen (Henle, Iwanoff, Merkel u. A.) annehmen, dass in die Zusammensetzung dieser Membran glatte Muskelelemente eingehen, die in radiärer Richtung verlaufen und somit einen Dilatator pupillae darstellen, leugnen die Andern vollkommen die muskuläre Natur jener Gebilde. Henle¹) sagt, dass die hintere Begrenzungshaut aus einer dünnen Muskelfaserschicht besteht, die sich vom Ciliarrande der Iris bis zum Pupillarrande erstrecke. Iwanoff und Jerophee²) beschreiben einfach eine Muskelfaserschicht vor dem Pigmentepithel ohne nur mit einem Worte der hinteren Begrenzungshaut zu erwähnen. Für muskulär sieht diese Partie auch Merkel³) an. Andere Autoren, in erster Linie Grünhagen⁴) und nach ihm Schwalbe⁵) und Koganei⁶), äußern eine ganz entgegengesetzte Ansicht — sie stellen einen Dilatator pupillae vollkommen in Abrede. Das Wesentliche, was die Autoren der letzten Kategorie betonen, ist, dass die hintere Begrenzungshaut gar keine Kerne und auch gar keine zelligen Elemente besitze. Nach Schwalbe besteht diese Haut aus dünnen starren Fasern. Die Kerne, die in Verbindung mit derselben bei der Betrachtung von der Fläche zu sehen sind, liegen nicht in der Haut, sondern hinter derselben und gehören

³) Die Muskulatur der menschlichen Iris. Rostock. 1873.
⁴) Lehrbuch der Anatomie der Sinnesorgane. 1883.
A. Dostoiewsky:

Bei zwei Säugethieren, beim Seehunde und bei der Fischotter, ist das Vorhandensein eines Dilatatours unzweifelhaft; bei der Fischotter hat ihn schon Koganei beschrieben. Beim Seehunde besitzt er eine bedeutende dieke, beginnt am Ciliarrande der Iris als schmales Bündel, erreicht die Höhe seiner Entwicklung in der Mitte und endigt nicht weit vom Pupillarrand. Wie wir weiter
Ueber den Bau des Corpus ciliare und der Iris von Säugethieren. 115

unten sehen werden, ist für die Iris beider Thiere ausserdem eine starke Entwicklung des Sphincters charakteristisch. Diese zwei Muskeln mit ihren Gefässen und Nerven nehmen fast die ganze Dicke der Iris für sich in Anspruch und lassen nur wenig Raum für das Stroma.

Anlangend die Iris des Menschen, so wollen wir mit Radiär-
schnittken beginnen. In solchen liegt unmittelbar vor dem zwei-
seitigen Epithel eine scharf begrenzte Schicht, die sich vom Ciliarrande bis zum Pupillarrand erstreckt und sich mit Eosin hellrosa färbt. Die Dicke dieser Schicht ist nicht überall gleich; gewöhnlich nimmt sie ungefähr gegen die Mitte hin zu, erreicht 0,02 nun und nimmt gegen die Ränder hin ab. Schon eine ober-
flächliche Betrachtung von mit Eosin und Haematoxylin behandelten Präparaten genügt, um sich zu überzeugen, dass jene Schicht eine radiäre Streifung darbietet und zahlreiche längliche Kerne enthält. Die letzteren sind allenthalben zerstreut, stellenweise aber auch zu Gruppen vereinigt, so dass man im Inneren der Membran in der Richtung von hinten nach vorn bis zu sechs Reihen von Kernen zu zählen vermag. Solche Bilder machen es unzweifelhaft, dass erstens die Kerne in der Substanz der Membran selbst und nicht ausserhalb der letzteren gelagert sind und dass zweitens diese Membran entgegen Schwalbe's Ansicht viel dicker ist als eine einzelne Muskelzelle. Verfolgt man die Schicht gegen den Pupill-
larrand hin, so kann man wahrnehmen, dass ihre Fasern mit der Annäherung an den Sphincter sammelt den in ihnen enthaltenen Kernen fächerförmig auseinanderfahren und in den Sphincter übergehen, wie dies auf Figur 13 zu sehen ist, wo sp die Fasern des quer durchschnittenen Sphincters, b — die gestreifte hintere Begrenzungs haut mit ihren Kernen und ihren fächerförmigen in den Sphincter übergehenden Fasern bedeutet.

Flächenschnitte zeigen deutlicher, dass die ganze Haut aus feinen scharf contourirten Fäserchen besteht, die sich leicht iso-
liren und gut mit Eosin färben lassen. Kurz es sind die Fäser-
chen, die Schwalbe und Koganeý genau beschrieben haben, und denen der letztere eine mittlere Stellung zwischen Bindegewebe und elastischen Fasern anwies. Allein während diese beiden Autoren behaupten, dass die Haut lediglich aus solchen Fäser-
chen bestehe, muss ich entschieden betonen, dass man an Flächenschnitten ebenso wie an Radiärschnitten zwischen den Fäserchen

Wenn man schon beim Menschen, wo die hintere Begrenzungsschicht relativ ziemlich dünn ist, deutlich sieht, dass die Kerne in dieser Schicht selbst und nicht ausserhalb der letzteren gelegen sind, so überzeugt man sich davon noch leichter an der Iris solcher Thiere, bei welchen die fragliche Schicht gut entwickelt ist. In der Beziehung nimmt die Iris von Repräsentanten aus der Familie der Felinae, besonders die des Löwen und die von Felis guttata, ein hohes Interesse in Anspruch. Bei den zuletzt genannten zwei Thieren erreicht die hintere Begrenzungsschicht die Höhe ihrer Entwicklung. Auf Radiärschnitten zeigt sie in verschiedenen Partien der Iris eine verschiedene Dicke. Am dicksten ist sie in der Mitte und misst hier unter Umständen bis 0,1 mm. Nach den Rändern zu wird sie dünner. Am Pupillarrand angelangt, legt sie sich hinter den Sphincter. An Radiärschnitten sowohl als an Quer- und Flächenschnitten kann man sich leicht überzeugen, dass die Hauptmasse der hinteren Begrenzungsschicht auch hier aus eigenthümlichen feinsten Fäserchen, die in radiärer Richtung ver-
Ueber den Bau des Corpus ciliare und der Iris von Säugethieren. 117

laufen, besteht. An denselben Schnitten sieht man auch, dass in der Schicht zahlreiche Kerne enthalten sind, die auf Radiärr- und Flächenschnitten eine längliche, auf Querschnitten eine runde Form besitzen. Querschnitte lehren ferner, dass die hintere Begrenzungsschicht erstens nicht in einer Ebene verläuft, sondern den Falten der hinteren Irisfläche folgt, und zweitens durch Bindegewebsbündel, welche vom Stroma der Iris ausgehen, in getrennte Bezirke eingetheilt wird. Die beigegebene Fig. 14 stellt die hintere Partie der Iris des Löwen im Querschnitt dar. Man sieht, dass die hintere Begrenzungsschicht eine Falte der hinteren Irisfläche wiederholt. Die Schicht selbst besteht im Allgemeinen aus kleinsten Punkten, die Querschnitte von Fasern repräsentiren; zwischen denselben liegen runde Kerne. Bei b sieht man die zwei Schichten von Pigmentzellen der Pars epiblastica iridis. Es ist also unzweifelhaft, dass beim Löwen sowohl als beim Menschen in der hinteren Begrenzungsschicht längliche Kerne enthalten sind. Nicht so leicht lässt sich entscheiden, zu was diese Kerne gehören. Studirt man indessen feinste Radiärr- und Flächenschnitte, so überzeugt man sich, dass jeder längliche Kern in einer spindelförmigen Zelle mit zugepsätzten Enden sitzt. Weil diese Zellen innig den früher beschriebenen Fasern anliegen, so lassen sie sich an Radiärschnitten ziemlich schwer einzeln beobachten. Am leichtesten gelingt dies in der Nähe des Sphincters, wo die Fasern mit den dazwischen gelegenen länglichen Kernen fächerförmig dem letzteren zustreben, so dass Fasern und Zellen nicht mehr so innig einander anliegen. Was die Frage nach der Art dieser Zellen anbetrifft, so erlauben die spindelförmige Gestalt und der längliche Kern, sie als glatte Muskelfasern, von denen sie sich morphologisch durch nichts unterscheiden lassen, anzusprechen. Am besten überzeugt man sich davon an Flächenschnitten, die zugleich die hintere Begrenzungsschicht und den Sphincter getroffen haben. Wenn manche Autoren behaupten, dass im Allgemeinen an Querschnitten sowohl als an Radiärr- und Flächenschnitten die hintere Begrenzungsschicht ihrem Nachbar, dem Sphincter, nicht ähnlich sieht, so ist hierin nichts Wunderbares, da der Sphincter lediglich aus Muskelfasern besteht, während in der hinteren Begrenzungsschicht, abgesehen von Muskelelementen, eigenthümliche Fasern, die unter Umständen ihren Hauptbestandtheil ausmachen, enthalten sind. Es ist ferner zu bemerken, dass die Menge der in der hinteren Be-
A. Dostoiewsky:

grenzungsschicht enthaltenen Zellen bei Weitem nicht dieselbe ist in verschiedenen Fällen. Manchmal ist sie grösser, manchmal geringer.

Aus allem Obigen lassen sich, wie mir scheint, folgende Schlüsse ziehen:

1) Die Membrana Bruchii autorum oder die hintere Begrenzungshaut ist keine kernlose Membran, sondern eine Schicht von eigenthümlichen Fasern mit dazwischen eingelagerten länglichen Kernen.

2) Die Kerne gehören zu Zellen, welche alle morphologischen Eigenschaften glatter Muskelfasern haben.

3) Nur in der hinteren Begrenzungshaut liegen Muskelfasern (natürlich abgesehen vom Sphincter); sonst nirgends, weder vor der Bruch’schen Schicht noch im Innern des Stromas.

Wie bereits oben erwähnt, existirt bei zwei von mir untersuchten Thieren, beim Seehunde und bei der Fischotter, ein unzweifelhafter Dilatator; bei beiden beginnt er in Gestalt eines dicken Bündels am Ciliarrand und zieht, wie aus Fig. 7 und 8 ersichtlich, allmählich schmäler werdend, bis dicht an den Pupillarrand der Iris. Er stellt ein Bündel glatter Muskelfasern dar, die innig einander anliegen und fast gar kein Bindegewebe zwischen sich enthalten. Bei beiden Thieren erreicht außerdem der Sphincter ganz colossale Dimensionen. Beim Seehunde beginnt derselbe dicht am Pupillarrand und erstreckt sich fast über die gesamte Iris, hört indessen etwas früher auf als der Dilatator. Beide Muskeln, der Dilatator sowohl als der Sphincter, nehmen fast die ganze Iris für sich in Anspruch, so dass für das Stroma fast gar kein Raum übrig bleibt. Beide sind von zahlreichen Pigmentzellen vollkommen durchsetzt. Bemerkenswerth ist noch ferner, dass bei beiden Thieren gar keine hintere Begrenzungsschicht existirt, oder anders ausgedrückt, dass die hintere Begrenzungsschicht ausschliesslich aus Muskelfasern besteht ohne Beimengung des eigenthümlichen Gewebes, welches beim Menschen und bei anderen Thieren vorhanden ist. Für den Seehund ist noch die Thatsache charakteristisch, dass die grossen Gefäss und Nerven nicht in der Iris liegen, wie bei anderen Thieren, sondern vor die vordere Fläche verlegt sind und von der vorderen Kammer nur durch eine Pigment- und Endothelschicht geschieden sind. Die Arterie des Circulus iridis major schiebt sich sogar in die vordere
Ueber den Bau des Corpus ciliare und der Iris von Säugenthieren. 119

Kammer hinein, wie man dies auf Fig. 7 abgebildet sieht. Ausserdem inseriren sich an der vorderen Irisfläche, wie bereits oben angegeben, die vorderen Balken des Annulus ciliaris bulbi.

hinter dem Endothel eine vollkommene regelmässige Schicht von Pigmentzellen dar. Mit dem Endothel sind sie fest verklebt, wie daraus zu schliessen, dass gewöhnlich mit der Ablösung des letzt-

tern auch die Schicht der Pigmentzellen abgelöst wird. Unmittel-

bar dahinter ist das Bindegewebsstroma dicht. Die beigegebene

Fig. 15 stellt die vordere Partie der Katzeniris im Radiärdurch-
schnitt dar. E — das vordere Endothel, p — die einschichtige

Reihe der Pigmentzellen, S — Stroma. Auf Fig. 16, welche einen

Flächenschnitt durch die Vorderfläche der Löweniris darstellt, sind

die Pigmentzellen von der Fläche zu sehen.

Zum Schlusse fühle ich mich verpflichtet Herrn Dr. Hans

Virchow noch einmal meinen Dank für das reichhaltige Material,

das er mir zur Verfügung gestellt hat, anzusprechen, und dann

meiner Anerkennung für die rege Theilnahme, die er meinen Ar-

beiten gewidmet, Ausdruck zu geben.

Erklärung der Abbildungen auf Tafel X u. XI.

Auf allen Abbildungen bedeutet I = Iris, D = die Descemet'sche Haut,

C = Cornea, M = Musculus ciliaris.

Fig. 1. Meridionalschnitt aus dem vorderen Augenabschnitt von Antilope
damalis. Die Conturen sind mit Hilfe des Embryographen ge-
zeichnet. Vergr. 30.

Fig. 2. Querschnitt aus dem Annulus ciliaris bulbi, durch die Irisfortsätze

Fig. 3. Längsschnitt durch den Circularring. Cervus Alces. a Bündel elastis-
cher Fasern, b Zellen dazwischen. Vergr. 300.

Fig. 4. Meridionalschnitt aus dem vorderen Augenabschnitt vom Gnu. Em-

bryograph. Vergr. 30.

Fig. 5. Meridionalschnitt aus dem vorderen Augenabschnitt des Büffels.

Vergr. 200.

Fig. 6. Meridionalschnitt aus dem vorderen Augenabschnitt des Löwen.

Embryograph. Vergr. 15.

Fig. 7. Meridionalschnitt aus dem vorderen Augenabschnitt des Seehundes.

7,5.
Vergleichend anatomische Studien über den Accommodationsapparat des Vogelauges.

Von

William B. Canfield M. D.

aus Baltimore U. St. A.

Hierzu Tafel XII, XIII u. XIV.

Es sind auch in Folge dessen die Charaktere genügend bekannt, welche das Vogelauge gegenüber dem allgemeinen Typus des Wirbelthierauges und speciell des Säugethierauges unterscheiden. Aber es ist noch das Bedürfniss vorhanden, eine Kennt-
niss von einer grösseren Zahl von Vogelaugen zu gewinnen, welche als Grundlage ebensowohl für vergleichend morphologische wie für vergleichend physiologische Betrachtungen dienen kann; für erstere insofern, als dadurch eine Kenntniss derjenigen Entwicklungsstufen hergestellt wird, welche bis zu dem Vogelauge in seiner spezifischen Ausbreitung hinführt; für letztere, indem durch die Beobachtung der Variation in den einzelnen Elementen des Baues das Urtheil über die Leistungen der einzelnen Factoren innerhalb der Gesammtleistung geschärft wird.

Ohne Zweifel ist es der Accommodationsapparat des Vogelauges, der einen besonderen Vorzug dieses Auges bildet und die hier vorliegenden Untersuchungen beschränken sich auf diesen Abschnitt.

Was eine erneute Untersuchung gerade dieser Theile wünschenswerth macht, ist zugleich der Umstand, dass die verbesserten Methoden es möglich machen, topographisch richtige Bilder zu erhalten. Diese Methoden, unter denen besonders die sorgfältigere Erhärtung, die Einbettung in Celloidin und die Trockenpräparate nach Semper und Frédéricq zu erwähnen sind, gestatten nämlich, Präparate herzustellen, an denen einerseits die in der Consistenz so verschiedenen Bestandtheile des betreffenden Abschnittes in topographischer Lage erhalten sind, und an denen andererseits manche Einzelheiten schärfer hervortreten.

Die Theile, deren Kenntniss dadurch besonders gewinnt, sind:

a) Der Fontana'sche Raum,

b) der Petit'sche Raum,

c) die Lage der Falten zum Linsenäquator,

d) die Faltenform.

Das Material zu dieser Arbeit stammt zum Theil aus Brasilien und wurde dort von Herrn Dr. Ehrenreich frisch in Müller'sche Flüssigkeit eingelegt und nach längerer Behandlung mit diesem Reagenz in Spiritus übertragen.

Die Bestimmung der Vogelarten rührt von Herrn Ehrenreich her. Diese Augen so wie einige andere, welche aus dem Berliner zoologischen Garten stammten, wurden mir von Herrn H. Virchow zur Untersuchung überlassen. Der Rest ist leicht zu beschaffenden Vögeln entnommen.

Die Augen wurden wesentlich nach denselben Principien behandelt. Sie wurden in Müller'seher Flüssigkeit fixirt und in Alcohol erhärtet. Als Entkalkungsflüssigkeiten wurden benutzt:

Pikrinsäure (gesättigte Lösung), Chromsäure, Salpetersäure 20%.
Die Augen wurden nachher in Celloidin nach der von Czermak1) beschriebenen Weise eingebettet, geschnitten, mit Hämatoxylin und Eosin gefärbt und in Canadabalsam eingeschlossen.

Die angeführten Messungen der Augen sind manchmal an frischen Augen, manchmal nach der Behandlung mit Müllerscher Flüssigkeit und Alkohol gemacht worden, und wenn auch nicht behauptet werden kann, dass die Maasse durchaus den der lebenden Augen entsprechen, so waren doch die Augen in ihrer Form wohl erhalten, so dass die Zahlen immerhin beanspruchen können, zur Grundlage einer vergleichenden Betrachtung zu dienen.

Die spezifischen Merkmale des Accommodationsapparates der Vögel kann man finden an

1) der Hornhautkrümmung, 2) der vorderen Augenkammer, 3) der Linse, 4) der Selera, 5) dem Ciliarmuskel, 6) dem Fontana'schen Räume, 7) den Faltenformen, 8) der Iris und Pupille, 9) dem Petit'schen Räume.

Die Cornea propria ist im Vergleich mit der Grösse des Auges dünn; ebenso die Descemet'sche Haut.

An der Stelle, wo sich die Hornhaut an die Selera ansetzt, ist ein pigmentirter Saum vorhanden, der bei allen Vögeln mehr oder weniger markirt ist.

2) Die vordere Kammer ist tief.

3) Was die Form der Linse anbelangt, so ist der Krümmungsradius der Vorderfläche ebenso wie bei den Sängertieren grösser wie der der Hinterfläche. Nach Leuckart2) verhält sich die Achse zum Querdurchmesser der Linse wie 1 zu 1,35; nur die Nachtraußvögel haben eine dicke und gewölbte Linse, und wie Sömmering constatirt hat, sind die Radien der vorderen und hintern Fläche der Linse von Strix bunbo fast gleich.

Eine besondere Eigenthümlichkeit, welche allerdings die Vögel

1) Czermak, Archiv f. Ophthalm. Bd. XXX.
3) Sömmering, De oculorum hominis animaliumque sectione horizon-
tali commentatio Goettincae MDCCCVIII.

mit den Reptilien theilen, bilden die sogenannten Radiärfasern, die zuerst von Treviranus 4) gesehen und später von H. Müller 5), Kölliker 6) und besonders von Henle 7) in seiner Monographie über die Krystalllinse beschrieben sind.

5) H. Müller, Gesammelte Schriften.
7) Henle.

9) P. Nuel und Fr. Hoseh, Untersuchungen über den Ciliarmuskel des Vogelauges in „Verslagen en Mededeelingen der Koninklijke Akademie van Wetenschappen. II. Reeks, 8 Deel. Amsterdam 1874.“

6) Als Fontana’schen Raum bezeichne ich in Uebereinstimmung mit den neueren Arbeiten über den Accommodationsapparat

bildung und der charakteristischen Textur nicht zu bezweifeln, dass es eine grosse Bedeutung im Accommodationsapparate spielt.

in seiner Beschreibung der Falten des Sängethierauges hat für die drei Ränder und die drei Winkel folgende Bezeichnungen gebräuchlich: cameraler (faserfreier), Petit’scher (faszertragender), uvealer Rand (Basis); chorioidealer (hinterer, proximaler), iridaler (vorderer, distaler); lentaler Winkel (Spitze). Der Einheitlichkeit wegen werde ich dieselbe Terminologie in meiner Arbeit anwenden, nur mit dem Unterschiede, dass der leutale Winkel, da er sich in einen Rand verwandelt hat, „Linsenrand“ genannt werden wird.

Ebenfalls nach der Nomenclatur von H. Virchow nenne ich die Bindegewebsplatte des Corpus ciliare „Grundplatte“.

Die Grundplatte, welche die Basis für alle Falten bildet, ist eine dünne Platte, die etwas dicker an der Iriswurzel ist und die an diesem Punkt reichlichere Faserzüge in die Falten („Faltenstamm“ H. Virchow), in die Iris und in das Fontana’sche Gewebe hineinschickt.

8) Ueber die Form der Iris und Pupille geben natürlich Präparate gerade von einem so muskulösen und in seiner Gestalt veränderten Gebilde nur unzuverlässige Resultate; wahrscheinlich wird in der Mehrzahl der Augen namentlich, wenn sie lebenswarm eingelegt sind, die Pupille stark erweitert sein.

13) H. Virchow.

Einiges Weitere über die Lage der gröberen und feineren Gefäße innerhalb der Irisseichten werde ich weiter unten angeben. Leider aber ist alles, was über diese Gefäße bekannt ist und von mir mitgetheilt werden kann, nicht ausreichend, um eine genügende Kenntniss dieser wichtigen Verhältnisse zu geben. Wenn man die überraschend grossen Differenzen in der Anordnung der Irisgefäße bei Wirbelthieren berücksichtigt, wird es klar, dass zwischen dem Gesammtbau der Iris und dem der Gefäße wichtige Beziehungen bestehen, und dass daher für das Verständniss der Irisfunktion eine Kenntniss der Gefäße nöthig wäre, um so mehr, als auf Grund sehr unvollkommener Kenntnisse sehr weitgehende physiologische Speculationen gemacht worden sind (Faber 14).

Endlich ist von mir eine bisher ungenügend gekannte Form von eigenthümlichen Zellen in der Iris der Eulenarten gefunden worden, über die ich an geeigneter Stelle sprechen werde. Die zwei Zellenlagen der Pars epiblastica iridis sind manchmal sehr leicht als gesonderte Schichten zu unterscheiden, manchmal dagegen so innig verbunden und von Pigment so stark erfüllt, dass sie auf dem Durchschnitt unter dem Bilde eines einfachen schwarzen Streifens erscheinen. Sie werden weiterhin nur soweit erwähnt werden, als sie etwas Besonderes darbieten.

9) Petit’scher Raum. — Der faltenfreie, d. h. hinter den Falten gelegene Theil des Petit’schen Raumes ist weit und von

zarten Fasern dicht erfüllt; ebenso der vordere zwischen den Falten gelegene Abschnitt dieses Raumes. Meine Untersuchungen haben sich jedoch auf diesen Punkt nicht erstreckt, so dass ich weiterhin darauf nur in denjenigen Fällen zurückkommen werde, in welchen sich auf Grund meiner Präparate gezeigt hat, dass durch Ausdehnung der Falten nach hinten der Raum bis an den Glaskörper heran ausgefüllt ist.

<p>| Tabelle I. |
|-------------------|-------------------|-------------------|-------------------|-------------------|
| | Adise | Senkrechter Durchmesser | Horizontaler Durchmesser | Hornhaut-Durchmesser |
| Natatores | Aptenodytes demersa 19 | 24 | 23.5 | 9 | 10.5 | 9 |
| | Anas anser domestica 16.5 | 20 | 19.5 | 12 | 4 | 4 |
| | Anas domestica 10.5 | 13.5 | 13.5 | 7 | 4 | 4 |
| | | | | | | |</p>
<table>
<thead>
<tr>
<th>Klasse</th>
<th>Ardea egretta</th>
<th>Ardea scapularis</th>
<th>Phasianus colchicus</th>
<th>Gallus domesticus</th>
<th>Crax Blumenbachii</th>
<th>Meleagris gallopavo</th>
<th>Coturnix communis</th>
<th>Columba domestica</th>
<th>Ara (species)</th>
<th>Cuculus cayanus</th>
<th>Cassicus haemorrhous</th>
<th>Crotaphaga ani</th>
<th>Buteo vulgaris</th>
<th>Ictinea plumba</th>
<th>Glaucidium ferrugineum</th>
<th>Noctua cucullaria</th>
<th>Strix flammea</th>
<th>Strix bubo</th>
<th>Rhea americana</th>
<th>Zwischenstück</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aehse</td>
<td>14.5</td>
<td>17.5</td>
<td>17</td>
<td>9.5</td>
<td>5</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>Senkrechter</td>
<td>11</td>
<td>13</td>
<td>12.5</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Durchmesser</td>
<td>10.5</td>
<td>19.5</td>
<td>19.5</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Horizontaler</td>
<td>12</td>
<td>17</td>
<td>17</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Durchmesser</td>
<td>17</td>
<td>22.5</td>
<td>22.5</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Nasale Seite</td>
<td>8.5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>3.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Temporale Seite</td>
<td>11</td>
<td>14</td>
<td>14</td>
<td>7</td>
<td>3</td>
<td>5.5</td>
<td></td>
</tr>
</tbody>
</table>

In dieser Tabelle habe ich die genauen Messungen angegeben, so weit das Auge es gestattete. In Fällen, wo die Zahlen fehlen, waren die Formen der Augen nicht genügend erhalten, um das Maass anzuführen.

Der Vergleichung wegen habe ich sodann den senkrechten Durchmesser als 100 gesetzt und die übrigen Maasse darnach bestimmt.
<table>
<thead>
<tr>
<th>Tabelle II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abae</td>
</tr>
<tr>
<td>Natatores</td>
</tr>
<tr>
<td>Aptenodytes demersa</td>
</tr>
<tr>
<td>Anas domestic a</td>
</tr>
<tr>
<td>Anas anser domestic a L.</td>
</tr>
<tr>
<td>Gruatatores</td>
</tr>
<tr>
<td>Ardea egretta</td>
</tr>
<tr>
<td>Ardea scapularis</td>
</tr>
<tr>
<td>Phasianus colchicus</td>
</tr>
<tr>
<td>Gallus domesticus</td>
</tr>
<tr>
<td>Rasores</td>
</tr>
<tr>
<td>Crax Blumenbachii</td>
</tr>
<tr>
<td>Meleagris gallopavo</td>
</tr>
<tr>
<td>Coturnix communis</td>
</tr>
<tr>
<td>Columbinae</td>
</tr>
<tr>
<td>Columba domestica</td>
</tr>
<tr>
<td>Seuatores</td>
</tr>
<tr>
<td>Ara (species)</td>
</tr>
<tr>
<td>Cuculus canyavius</td>
</tr>
<tr>
<td>Passerc</td>
</tr>
<tr>
<td>Cassecus haeccorrhous</td>
</tr>
<tr>
<td>Crotophaga ani</td>
</tr>
<tr>
<td>Buto vulgaris</td>
</tr>
<tr>
<td>Ictinca plumba</td>
</tr>
<tr>
<td>Glaucidium ferrugineum</td>
</tr>
<tr>
<td>Noctua cunicularia</td>
</tr>
<tr>
<td>Strix flammec</td>
</tr>
<tr>
<td>Strix bubo</td>
</tr>
<tr>
<td>Curatores</td>
</tr>
<tr>
<td>Rhea americana</td>
</tr>
</tbody>
</table>

Es stellt sich aus dieser Tabelle heraus, dass die Gleichheit des senkrechten und horizontalen Durchmessers ziemlich streng durchgeführt ist.
Beschreibungen der einzelnen Vögel.

1. Pinguin.

Die Hornhaut beim Pinguin ist im Verhältniss zur Grösse des Auges die kleinste unter allen von mir untersuchten Vögeln, und sie ist auch sehr wenig gewölbt.

Der Ciliarmuskel ist sehr wenig entwickelt und die drei Theile lassen sich nicht unterscheiden.

Die der Linse zugewendeten Abschnitte der Falten sind von zungenförmiger Gestalt mit abgerundeten Spitzen, die sich vor
dem Linsenäquator an die Linse ansetzen. Auf dem Querschnitte gesehen, zeigen sie sich besetzt von seitlichen Anhängen, Wülsten oder Papillen, die jedoch nicht so reichlich sind, wie sonst bei Vögeln.

Die Iris des Pingüins besteht aus einem dicken Pupillartheile und einem noch dickeren Ciliartheile.

Der Spincter ist in der ganzen Breite der Iris vom Pupillar- bis zum Ciliarrande sichtbar, jedoch mit gewissen Abweichungen der Lage und der Faserdicke. Er scheint an der Grenze des äusseren und mittleren Drittels unterbrochen und an der Grenze des inneren und mittleren Drittels spärlich ausgebildet zu sein. In einer schmalen Pupillarzone nimmt der Sphincter die ganze Dicke der Iris ein, lässt aber dann hinten eine allmählich zunehmende Schicht für den Dilatator frei. Er ist jedoch noch in der Mitte der Iris im grössten Theil der Dicke vorhanden und setzt sich in immer weniger deutlicher Weise und durch die gleich zu schildernden Fasern zersprengt, bis zum Ciliarrande fort.

Der Dilatator ist zu verfolgen in Fasern, welche aus dem Sphincter hervorkommen und in der Nähe der hinteren Fläche der Pars mesoblastica im Bogen in eine der Oberfläche parallele Richtung übergehen. Er reicht nicht bis zum Pupillarrand, dagegen sind seine Fasern im Sphincter mindestens bis zur halben Dicke des Muskels zu verfolgen. Der Dilatator ist in schöner Entwicklung und deutlicher Abgrenzung in der Mitte der Irisbreite zu sehen, doch von hier gegen den Ciliarrand hin verwandelt sich sein Aussehen in zunehmender Weise, indem die eine radiäre Faserrichtung in zwei gekrenzte Richtungen aufgelöst wird, welche zuerst nur wenig von der Dilatatrorrichtung divergiren, dann aber in der Nähe des Ciliarrandes immer steeper werden, so dass die Fasern zum Theil mehr einen queren, d. h. von der hinten zur vorderen Fläche gerichteten, wie einen radiären Verlauf haben. Diese Fasern sind durchflochten und leicht wellig gebogen und so entsteht in der Ciliarzone der Iris ein eigenthümliches von sonstigen Befunden abweichendes Bild der Muskulatur, in welchem ein typischer Dilatator nicht zu finden ist und in welchem auch die quergetroffenen Fasern möglicher Weise dem gekreuzten System angehören können, so dass dann auch ein Sphincter an dieser Stelle fehlen würde. Alle diese Fasern des ciliaren Abschnittes sind dicker wie die des pupillaren Theiles. Zwischen den Muskel-
fasern sind feine Bindegewebsfasern und -zellen vorhanden. Um die grossen Nervenstämme und Blutgefässen ist das fibrilläre Bindegewebe sehr stark entwickelt. Ausserdem ist aber an der Oberfläche an der Stelle, wo das Fontanale'sche Gewebe sich an die Irisvorderfläche ansetzt, bis zur Grenze der Pupillarzone eine besondere Anhäufung von Bindegewebe, welche mit sternförmigen Pigmentzellen vermischt ist, in Form eines ringförmigen Wulstes vorhanden. Capillargefäss scheinen spärlich zu sein.

2. Ente.

Das Zwischenstück der Sclera ist bei der Ente 3 bis 4 Mal so dick wie die Hornhaut. Es ist am dicksten gerade am vorderen Rand des Knochenringes. Es enthält in seinen hinteren zwei Dritteln den dünnen Knochenring, im vorderen Drittel aber nur fibröses Gewebe.

Der Wulst ist breit in der Richtung von vorn nach hinten, niedrig und am hinteren Ende nicht deutlich abgegrenzt. Die innere Scleralplatte ist unmittelbar hinter dem Wulste dick, und sie bedeckt, wenn auch immer dünner werdend, die ganze Innenseite des Muskels.

An der Aussenwand der Muskelnische trifft man neben den hier gelegenen der Sclera angehorenden eirenlär verlaufenden Bündeln eine dünne Lage von Fasern, welche dieselbe Richtung haben wie die Muskelfasern und diesen zum Ansätze dienen.

Die Knochenplatten bestehen aus compacter Substanz ohne Markräume. Blutgefässkanäle sind in den Knochenplatten zu sehen, jedoch spärlich.

Der Ciliarmuskel ist dünn, vorn mehrere Fasern breit und hinten fast unsichtbar. Die Fasern verlaufen durch die ganze Länge des Muskels und die drei Theile sind nicht zu unterscheiden.

Der Fontanale'sche Raum bildet ein langes hinten zugespitztes Dreieck, dessen äussere Seite etwas kürzer wie die innere und dessen vordere eammerale Seite sehr kurz ist, d. h. circa 1/6—1/6 der beiden anderen Längen. Der Raum enthält in allen seinen Abschnittent Gewebe, so dass kein faserverfreier Theil übrig bleibt. Die Verschiedenheit in der Anordnung des Fontanale'schen Gewebes sind bei diesem Vogel auffallend. Vom vorderen Ende des Wulstes gehen gerade Fibrillenbündel einwärts und rückwärts und
verflechten sich dicht hinter der Iriswurzel mit der Grundplatte. Durch diesen Zug wird der Fontana'sche Raum in zwei Abschnitte zerlegt von dreieckiger Form, von denen der vordere spärliche aber dicke Balken netzformig verbundenen Gewebes enthält und bei günstig ausgefallenen Schnitten durch einen stärkeren Balken gegen die Kammer begrenzt ist; von denen der hintere netzartiges Gewebe enthält, dessen Maschen in der Richtung von aussen vorn nach hinten innen gestreckt sind. Das Gewebe im vorderen Abschnitte besteht aus den oben erwähnten dicken Balken mit kleinen runden und grossen ovalen Kernen, welche in ziemlich gleicher Entfernung von einander an die Fasern derart angeordnet sind, dass jeder Kern einen kleinen Hügel an der Seite der Faser bildet und von einer dünnen Protoplasmamschicht bedeckt ist, sowie es Fig. 10 zeigt. An den Knotenpunkten der anastomosirenden Fasern im hinteren Abschnitte des Raumes sind runde und ovale Kerne vorhanden, von wenig Protoplasma umgeben.

Der an die Linse anstossende Theil einer Falte ist auf dem Längsschnitt fast dreieckig, d. h. der der Linse zugewendete Rand ist klein, am kleinsten unter allen von mir untersuchten Vögeln.

Die Iris zeigt sich, an meinen Präparaten gesehen, gleichmässig dünn vom Ciliar- bis zum Pupillarrande, ausser an der Wurzel, wo sie sich so verdünnt, dass sie etwa auf den vierten bis sechsten Theil der Dicke abnimmt. Die inneren 2/3 der Iris enthalten Sphincterfasern, die hier innerhalb der pupillaren Zone fast die ganze Irisdicke einnehmen. In der Ciliargegend sind diese Fasern sehr spärlich und auf vielen Schnitten gar nicht vorhanden.

Die Dilatatorfasern verlaufen vom ciliaren Rande bis fast an dem pupillaren. Sie biegen nach vorn und innen in die Spinetergegend um. Radiärfasern sind auch durch die ganze Irisdicke zu sehen, sogar vor dem Sphincter, denn der Sphincter lässt vorn eine breite Schicht frei, in welcher sich Capillargefässe in dichter Anordnung und zum grössten Theile über die Fläche prominent vorfinden. Das Stroma ist locker und feinfaserig, und Bindegewebszüge biegen aus der Iriswurzel in die Falten ab.

Das Zwischenstück der Sclera ist kurz und dünn; seine dickste Stelle entspricht dem vorderen Rande des Knochenringes.

Der Ciliarmuskel ist klein und dünn, obgleich nicht so unentwickelt wie bei der Ente. Die drei Theile sind nicht zu erkennen.

Die Falten haben dasselbe Aussehen und fast dieselbe Form wie die der Ente, jedoch ist der an die Linse stossende Rand länger, so dass eine mehr viereckige Form der Falte herauskommt. Die Grundplatte ist hinter der Iriswurzel dick und mit dem Gewebe des Fontana'schen Raumes durch reichlichere Faserzüge verbunden wie bei der Ente.

Bei der Gans ist die Iris auf meinen Präparaten ungemein dünn und breit. Die Muskulatur ist wenig entwickelt, ebenso aber auch das Bindegewebe, so dass die Iris ein lockeres Gefüge be-
sitzt. Auffallend ist die Dicke der Pars epiblastica iridis, welche den vierten Theil der Irisdicke bildet.

Der Sphincter ist ausserordentlich spärlich. Die einzelnen Muskelfasern liegen in dem zarten Maschenwerke nicht dicht zusammen. Sie nehmen in der Mitte der Irisbreite etwas zu und in der Papillargegend nehmen sie die ganze Pars mesoblastica ein; aber in der Ciliargegend liegen sie sehr verstreut.

Die Dilatatorfasern sind, verglichen mit denen des Sphincter, gut entwickelt, besonders in der Ciliargegend. Sie reichen fast bis zur Pupille und bilden eine deutliche Schicht. Feine Bindegewebsfasern bilden das Stromata der Iris, kommen aus den Falten und verlaufen zwischen den Muskelfasern. Auf der Irisvorderfläche liegt eine Schicht von sternförmigen Pigmentzellen, die an der Pupille durch die ganze Irisdicke verstreut sind. Capillaren sind auf der Vorderfläche sowie im Innern vorhanden.

4. Ardea egretta.

Die Hornhaut bei diesem Vogel ist im Vergleich zur Grösse des Auges dick; am Rande zerfällt sie in einen vorderen resp. äusseren dicken Theil, der sich in die äussere Scleraplatte fortsetzt, und in einen inneren resp. hinteren lockeren Theil, der in die innere Scleraplatte übergeht.

Der Ciliarmuskel ist an der temporalen Seite dieses Auges dünn, und selbst an der nasalen Seite, wo er sonst dicker ist, schwach entwickelt. Er fängt weit vorn, gleich hinter der Hornhautscleragrenze an. Die vordersten Fasern sind kurz und verlaufen schräg von innen vorn nach aussen hinten. Die übrigen Fasern werden länger und gehen von vorn nach hinten in der

Der an die Linse stossende Theil der Fal ten ist gut entwickelt. Der lentale Rand bildet die längste Seite des Vierecks. Dieser Rand ist mit papillenartigen Vorsprüngen bedeckt, die an die Linse anstossen. Der Kammerrand der Falte ist gleichfalls lang und der Winkel, in welchem die beiden erwähnten Ränder zusammenstossen, liegt weit von dem Linsenäquator.

Die Iris dieses Vogels zeigt sich auf meinen Präparaten am dicksten nicht weit von der Iriswurzel und schärft sich gegen die Pupille hin zu. Ein Ciliarrand kann hier gar nicht angenommen werden, da sich die Iris so zu sagen in dem Fontana'schen Gewebe auflöst, besonders mit ihrer vordern Hälfte, während die hintere als geschlossene Schicht weiter nach der Seite reicht. Die Stelle, wo sie in ihrer ganzen Diöse als Iris zu bezeichnen ist, fällt mit dem vorderen Ende des Fontana'schen Raumes zusammen und liegt von der Iriswurzel resp. vom ciliären Ende der Pars epiblastica um etwa den fünften Theil der ganzen Irisbreite entfernt. Auf den ersten Blick erkennt man bei schwacher Vergrösserung, dass die Pars mesoblastica iridis aus zwei wesentlich differenten Schichten besteht, von denen die hintere theilweise dunkel pigmentirt ist. Nach dem oben Gesagten reicht die vordere Schicht nicht so weit ciliarwärts wie die hintere. Die hintere ist von lockerem Gefüge und schliesst die Muskeln ein; die vordere

5. Ardea scapularis.

Der Ciliarmuskel ist dünn an der temporalen Seite, dagegen an der nasalen grösser und an beiden Seiten gut entwickelt. Er macht den Eindruck eines einzigen Muskels. Die die Muskel nische begrenzenden Platten sind sehr stark pigmentirt.

Der Fontana'sche Raum ist an der temporalen Seite grösser wie an der nasalen und kleiner wie beim letztbeschriebenen Vogel. Das Fontana'sche Gewebe ist noch zarter wie bei Ardea egretta.

Die Falten sind grösser wie beim letzteren. Der lentale Rand ist länger wie die anderen Ränder.

Die Iris ist auf meinen Präparaten sehr dünn. Ihre Muskulatur ist schwach. Die Iris zeichnet sich durch ein sehr lockeres Aussehen aus. Sie besteht, wie beim letzten Vogel, aus einer vorderen Bindegewebsschicht und aus einer hinteren muskulösen Schicht. Sphineterfasern sind zahlreich unmittelbar am Ciliarrande vorhanden, nehmen aber weiter nach innen hin zu, dann ab und endlich in der Pupillargegend wieder zu und reichen kaum bis zur Pupillengrenze. Unter diesen circulären Fasern sind einige Radiärfasern zu sehen, aber eine gesonderte Dilatatorschicht be-
Vergl. anatom. Studien über den Accommodationsapparat des Vogelauges. 141

steht nicht. In der vorderen Irisseichte trifft man auf der Vorderfläche eine begrenzende Bindegewebsplatte, die mit dem Fontana'schen Gewebe zusammenhängt; über sie erheben sich in der ciliaren Gegend der Irisoberfläche Capillaren und besonders bogenförmig verlaufende Gefässe, sowie sie bei Ardea egretta beschrieben wurden. Auch innerhalb der Schicht trifft man einzelne capillare Gefässe; vor allem aber fallen in dem Stroma von feinen Bindegewebsfasern zahlreiche kleine runde Zellen auf, über deren Natur ich nichts anzugeben vermag.

6. Fasan.

Der Ciliarmuskel ist lang und am dicksten in der Nähe des vorderen Endes, vor dem Knochenringe, jedoch vorn schmal auslaufend, sowie auch hinten. Der Crampton'sche Abschnitt bildet den grössten und dicksten Theil des ganzen Muskels. Die vordersten Fasern sind kurz und verlaufen von innen nach aussen; weiter hinten nehmen die Fasern an Länge zu und treffen dann tangential die Sclera, deren Krümmung sie sich anschliessen. Der Müller'sche Theil ist am kleinsten und der Brücke'sche am längsten. Zwischen dem Crampton'schen und Brücke'schen Muskel ist an der Aussenwand der Muskelnische eine wulstartige Verdickung der hier gelegenen Bindegewebsplatte wahrzunehmen, der man die Aufgabe einer Zwischenschne zuschreiben könnte; doch ziehen auch Fasern innen daran vorbei, von dem einen zum anderen Muskel.

Über die Form des Fontana'schen Raumes kann ich Genuieres nicht angeben, da an meinem Präparate Verbiegungen stattgefunden hatten; doch ist er in seinem vorderen Theile gross und breit. Die dicken vorderen Fibrillenbündel gehen in die Iriswurzel über.

Die Iris ist auf meinen Präparaten kurz und dick. Auffallend ist die kleine Zahl von Muskelfasern, welche in einem Maschen-
werk von starkem fibrillären Gewebe liegen. Die Sphincterfasern finden sich in der ganzenDicke vor, abgesehen von der an die Pars epiblastica angrenzenden Schicht; sie sind aber am Ciliar- und Pupillarrande etwas dichter gestellt.

7. Huhn.

Die Hornhaut des Huhnes ist klein, mässig gewölbt und sehr dick. In der vorderen oder äusseren Hälfte der Hornhautdicke sind die Lamellen dichter gedrängt als in der hintern oder innern.

Das Zwischenstück der Sclera ist kurz und dünn. Der Knochenring ist breit, d. h. er reicht so weit nach vorn, dass zwischen seinem vorderen Rande und der Hornhautscleragrenze ein Abstand bleibt, der etwa 1/4 der ganzen Länge des Zwischenstückes beträgt. Die Knochenplatten sind dünn und bestehen aus
Vergl. anatom. Studien über den Accommodationsapparat des Vogelauges. 143

compacte Substanz. Der Wulst ist nicht breit, aber deutlich vor-
springend. Die innere Scleraplatte ist dünn. Einige von ihren
Fasern gehen nach aussen in den Ciliarmuskel hinein, umkleiden
die Nervenstämmle und stehen dann allem Anscheine nach mit den
Muskelfasern in Verbindung.

Der Ciliarmuskel ist nicht lang, aber seine drei Theile
sind trotzdem ziemlich deutlich abgegrenzt. Der Crampton'sche
Theil ist der grösste. Eigenthümlich ist der Müller'sche Muskel,
von dessen Fasern einige von der inneren Seite des oben beschrie-
benen Faserzuges der inneren Scleraplatte entspringen. Diese
Muskelfasern weichen den grossen Nervenstämmen aus und sind
so an die innere Scleraplatte befestigt, dass der Muskel an dieser
Stelle, d. h. etwa in der Mitte seines innern Randes, das Aussehen
eines „musculus pennatus“ hat. Zwischen den Muskelfasern ist
ein Stroma von feinen Bindegewebsfasern mit Zellen vorhanden.

Der Fontana'sche Raum bildet ein langes, nach hinten
starke zugespitztes Dreieck, welches nur in seiner vorderen grösse-
ren Hälfte mit Gewebe durchsetzt ist. Die dicksten Fibrillen-
bündel gehen von dem vorderen Theile des Wulstes und greifen
weit auf die Vorderfläche der Iris über, so dass etwa die Hälfte
der letzteren im Raume liegt. Die dicksten Fibrillenbündel gehen
in den Faltenstamm über. Feinere Bindegewebsfasern lösen sich
von den beiden begrenzenden Platten des Raumes und anastomo-
siren reichlich. Der freie Theil der Falte bildet, wie man auf
dem Längsschnitte bemerkt, ein ziemlich grosses, fast gleichseitiges
Viereck.

Die Iris des Huhnes ist an meinen Präparaten dick in der
mittleren Portion und ziemlich gleichmässig zugespitzt an beiden
Rändern. Die Pars mesoblastica iridis zerlegt sich deutlich in drei
Schichten, von denen die mittlere dicke wesentlich durch die An-
wesenheit des Sphincter bedingt ist; eine vordere Schicht von
wechselnder Dicke enthält hauptsächlich Gefässe, und eine hinten
an die Pars epiblastica angrenzende Schicht, die aber nicht in die
Pupillarzone hineinreicht, ist wesentlich durch dichtes Bindegewebe
charakterisirt, enthält aber ausserdem den Dilatator. An der
Vorderfläche in der Ciliargegend ist eine dünne Schicht von
Sphincterfasern von den übrigen Sphincterfasern durch Capillaren
und Nerven getrennt. Die übrigen Sphincterfasern fangen etwas
innerhalb des Ciliarrandes an, nehmen zuerst an Zahl zu und dann
wieder ab. Die Dilatatorfasern reichen vom ciliaren bis zum pupillaren Rand und biegen von hinten nach vorn in die Spinetergegend um. Die Capillaren erheben sich über die Vorderfläche, sind aber auch im Innern der Iris vorhanden. Das Bindegewebsstroma ist ziemlich stark und besonders deutlich im Bereich der Dilatatorfasern zu sehen. Die Dicke der Pars epiblastica iridis nimmt von aussen nach innen ab.

8. *Crax Blumenbachii.*

Bei diesem Vogel ist die Hornhaut besonders dick, so dass ihr gegenüber die Sclera dünn aussieht.

Der Ciliarmuskel entspringt weit vorn, fast an der Hornhautscleragrenze, und verläuft bogenförmig nach hinten mit der Sclerakrümmung parallel. Er ist im vorderen Theile dick und nimmt nach hinten ab. Die drei Theile sind zu unterscheiden, obgleich nicht deutlich abgegrenzt. Die öfters erwähnte dünne Bindegewebsplatte, die die Muskelnische nach aussen begrenzt, ist hier deutlich zu sehen.

Der Fontana'sche Raum bildet ein längliches, nicht sehr breites Dreieck, dessen innere Seite so lang ist wie die äussere und vordere zusammen, da fast die Hälfte der Irisvorderfläche in den Raum hineingezogen ist. Das Gewebe ist besonders stark, reicht aber nicht bis zum hinteren Winkel des Raumes. Die vordersten balkenähnlichen Fibrillenbündel gehen auf die Irisvorderfläche und verflechten sich mit der dort befindlichen dicken pigmentirten Bindegewebschicht. Die Fibrillenbündel entspringen meistentheils von dem vorderen Theile der inneren Scleraplatte und verlaufen nach hinten und innen. Sie anastomosiren verhältnissmässig wenig. An ihren Ansatzpunkten sind sie mit runden

Die Falte bildet, wie man auf dem Längsschnitte sieht, ein Viereck, dessen innere Seite (Linsenrand) sehr kurz ist.

Die Iris ist auf meinen Präparaten schmal und klein, in der Mitte dick; nimmt aber nach beiden Rändern hin an Dicke ab. Der Pupillenrand ist sehr zugeschärft. Die Iriswurzel, d. h. die Verbindung der Iris mit dem Corpus ciliare ist im Vergleich mit andern Vögeln ziemlich stark, was übrigens auf der Abbildung übertrieben ist. Am auffallendsten ist das Pigment, welches die Betrachtung der übrigen Struktur der Iris wesentlich erschwert. Der Sphincter ist stark entwickelt und nimmt fast die ganze Dicke der Iris ein und zwar in völlig gleichmässiger Vertheilung vom Ciliar- bis zum Pupillarrande. Der Dilatator findet sich in einer besonderen Schicht an der hinteren Fläche, der Pars epiblastica iridis unmittelbar aufliegend, reicht aber nicht bis zur Pupille, da seine Fasern in die Sphinctergegend umbiegen. Sämtliche Fasern sind mit grossen Pigmentzellen überzogen. An der Vorderfläche liegt eine dicke Pigmentschicht, welche sich jedoch auf die Pupillarhälfte beschränkt. Allem Anschein nach ist diese Pigmentschicht eine Fortsetzung des pigmentirten Fontana’schen Gewebes, welches sich, wie oben erwähnt wurde, mit der Vorderfläche der Iris verbindet.

Das Auge des Truthahnes erinnert in vielen Beziehungen an das des letzten Vogels. Die Hornhaut ist dick, aber etwas kleiner wie bei Crax Blumenbachii.

Das Zwischenstück der Sclera ist fast zweimal so lang wie bei jenem, und der breite Knochenring reicht fast durch die ganze Länge des Zwischenstückes. Die Knochenplatten sind an ihren vorderen Enden dick, so dass in dieser Gegend die Sclera am dicksten ist. Die Knorpelschale reicht weit in das Zwischenstück hinein. Der Wulst ist niedrig und nach hinten nicht scharf abgegrenzt. Das angrenzende, den Anfang der innern Scleralplatte bildende Stück der Sclera ist gleichfalls dick. Die innere Scleralplatte ist fast bis zu ihrem hinteren Ende dick und enthält ausserordentlich grosse Nervenstämmle. An der Aussenwand der Muskel-
nische ist auch hier eine dünne Bindegewebsplatte nachweisbar, deren Fasern mit den Muskelfasern parallel verlaufen.

Die Falte ist fast dreieckig, denn der Linsenrand derselben ist beinahe so kurz, wie der bei der Ente.

Die Iris ähnelt in der Form der von Crax Blumenbachii, d. h. sie ist in der Mitte dick und an beiden Enden zugeschärft. Der Sphincter breitet sich vom Pupillar- bis zum Ciliarrande aus. Der Dicke der Iris nach reicht er nur innerhalb einer schmalen Pupillarzone von der vorderen bis zur hinteren Fläche und lässt im übrigen an der hinteren Fläche der Pars mesoblastica iridis eine Schicht frei, welche bis zur Mitte hin zunimmt, von hier bis zum Ciliarrande gleich bleibt, jedoch da die Iris im Ganzen sich verschmälert, der Sphincterschicht gegenüber an Ausdehnung gewinnt. In der Mitte der Iris, wo die Sphincterschicht am dicksten ist, häufen sich ihre Fasern vorn beträchtlich an. Im ciliaren und im pupillaren Drittel fehlt diese Eigenthümlichkeit. In letzterem drängen sich die Muskelfasern mehr zusammen als in den übrigen Theilen.

10. Wachtel.

Die Falte erhält ihre charakteristische Gestalt dadurch, dass ihr lentaler Rand ausgedehnt ist. Sie ist ebenso wie die Grundplatte stark pigmentirt.

Der Fontana'sche Raum bildet ein langes Dreieck, welches an seiner inneren Seite am längsten ist, und in welches sich von der Aussenwand her der Wulst hineindrängt. Der ganze Raum ist von Gewebe durchsetzt. Die Fibrillenbündel strahlen von dem
halkugelförmigen Wulste aus und vereinigen sich mit denen der Grund- und Scleraplatte. Das Gewebe ist an seinen Ansatzpunkten mit Pigment überzogen. Seine Bälkchen anastomosieren wenig.

Die Iris ist auf meinen Präparaten dick in der Mitte und dünner an beiden Rändern. Sie zeichnet sich durch ihr starkes Stroma aus, in welchem sich die spärlich vorhandenen Muskelfasern befinden. Die Sphincterfasern sind durch die ganze Irisdicke verbreitert, sind aber etwas dichter in der Ciliar- und Pupilargegend. Der Dilatator bildet in der hinteren Gegend der Pars mesoblastica iridis eine Schicht, deren Fasern die Pupillengrenze nicht erreichen, indem sie vorher in die Sphinctergegend umbiegen.

11. Taube.

Das Auge der weissen Taube eignet sich wegen des Pigmentmangels sehr zu einer genaueren Untersuchung.

Die Hornhaut ist dünn. An ihrer Peripherie tritt eine deutliche Trennung in zwei Schichten auf, deren äussere resp. vordere dicker ist und in die äussere Scleraplatte, deren innere resp. hintere dünner Schicht in die innere Scleraplatte übergeht.

Der Ciliarmuskel ist in der Mitte sehr dick und an beiden Ende zugeschärft. Seine enorme Entwicklung steht in auffallendem Gegensatze zu der Entwicklung der übrigen Theile des Auges. Eine Trennung desselben in drei Abschnitte ergibt sich nicht ungewöhnlich aus der Betrachtung des anatomischen Präparates, d. h.
Vergl. anatom. Studien über den Accommodationsspparat des Vogelauges. 149

des meridionalen Schnittes. In einem solchen wurden dadurch, dass ich mit Absicht auf das Deckgläsen drückte, die Muskelfasern mit sammt der dünnen vom Muskel nach aussen liegenden Bindegewebeplatte von der Sclera abgelöst, und ich konnte an diesem Präparate sehen, dass sich theilweise mit den zugespitzten Muskelfasern der vorderen (Crampton'schen) Partie Bindegewebefasern der erwähnten dünnen Platte verbanden, um eine Vermittlung zwischen diesen Muskelfasern und denen des hintern (Brücke-schen) Abschnittes zu übernehmen, dass aber theilweise auch Muskelfasern der vorderen Partie, indem sie sich weiter nach hinten fortsetzten, direkt zu Bestandtheilen des hinten gelegenen Abschnittes wurden.

Durch den dicken Ciliarmuskel wird der Fontana'sche Raum von der Mitte an so verengert, dass er in seiner hintern Hälfte nur spaltförmig ist. Seine vordere Hälfte dagegen ist breit. Das Fontana'sche Gewebe ist reich anastomosirend und ausserordentlich zart, jedoch findet man am Eingange dickere Fibrillenbündel, welche aus dem Wulst in die Iris zur Iriswurzel und einem Theile der Vorderfläche der Iris treten. Das Verhältniss der Zellen zu den Fasern ist in Figur 10 wiedergegeben worden; mit ziemlicher Constanz trifft man Zellen an den Knotenpunkten des Gewebes als dreieckige Platten.

Die Grundplatte des Corpus ciliare ist in ihrer ganzen Länge sehr dünn. Von ihrer ganzen äussern Fläche lösen sich feine Fasern ab, welche in das Fontana'sche Gewebe übergehen. Unmittelbar hinter der Iriswurzel sind die mit einander verflochtenen Bindegewebszüge sehr verwickelt und in ihrer Beziehung auf mechanische Leistungen ausdrucksvoll, wovon Fig. 9 ein Bild gibt. Die in der Grundplatte meridional verlaufenden Bündel gehen nämlich nicht allein, diese Richtung fortsetzend, in das Irisstroma über, sondern sie biegen sowohl über die äussere wie über die innere Fläche der Grundplatte, über letztere sehr reichlich, ab und gehen auf der einen Seite in ein Flechtwerk über, welches die kegelförmigen Füsse der Bälkchen des Fontana'schen Gewebes bildet, auf der andern bilden sie die wesentliche Grundlage des Faltenstammes. Ausser ihnen gibt es aber auch Züge, welche aus der Falte, nach vorn umbiegend, in die Iriswurzel treten, und endlich auch solche, die aus der Falte in das Fontana'sche Gewebe hineingehen, nachdem sie die Grundplatte durchsetzt haben.
Die einzelne Falte des Taubenauges hat die Form eines Vierecks, dessen längste Seite dem lentalen Rande entspricht. Ich gebe auch ein Bild des Querschnittes von Falten (Fig. 8), durch welches das Verhältniss der Pars epiblastica und Pars mesoblastica an der Falte und die Gestalt der seitlichen secundären Erhebungen (Wülste, Papillen) deutlich wird. Auch bietet diese Abbildung Gelegenheit, sich einen klaren Begriff von der Natur der Zonula Zinnii und ihren Beziehungen zu den Falten zu verschaffen.

Es zeigt sich, dass der von der Zonula eingenommene Raum (Petit'scher Raum) eine bedeutende Tiefe besitzt, dass er aus den zwischen den Falten gelegenen Buchten und einem faltenfreien hintern Abschnitt besteht, dass er gegen die hintere Augenkammer nicht durch eine Haut abgeschlossen ist, und dass ein kleiner glatter Abschnitt jeder Falte über den Petit'schen Raum hinaus in die Kammer hineinragt.

Die Iris ist auf meinen Präparaten dicht am Ciliarrande dick und wird von da an allmählich dünner. Ihre Pars mesoblastica zerfällt deutlich in zwei Schichten, die durch eine verschiedene Beschaffenheit des Stroma charakterisiert sind. Die vordere nämlich (Pars vasculosa) enthält ein dichtes Bindegewebe, besonders auf der Grenze gegen die hintere Schicht (Pars musculosa), die letztere ein lockeres, reticuläres Stroma. In der Pars vasculosa liegen reichliche Capillargefäße, die hier $\frac{1}{3}-\frac{1}{4}$ der Irisdicke einnehmen. Das Bindegewebe um diese Capillaren ist wie oben beschrieben.

Der Sphincter nimmt die ganze Pars musculosa ein und lässt keine Schicht für den Dilatator. Die Fasern des Sphincter liegen in einem zarten Maschenwerk von Bindegewebe, welches von dem Fontana'schen Gewebe im Ciliartheil der Iris verstärkt wird (Fig. 9). Die Sphincterfasern sind im Ganzen gleichmässig in der Iris verbreitet, jedoch in der Ciliargegend etwas dichter gestellt. Ein Dilatator ist meiner Erfahrung nach bei der weissen Taube gar nicht vorhanden. Ich habe an meridionalen Schnitten, an Querschnitten und an Flächenschnitten (serial geschnitten) die Iris sehr sorgfältig untersucht und finde manchmal gerade am Ciliarrande eine Radiärfaser, die weiter nach innen gänzlich verschwindet, aber weit häufiger ist gar keine Spur von Radiärfasern da. Ich habe auch die Iris als ein Ganzes gefärbt und aufgelegt, nach welcher Methode die Muskeln in ihrem ganzen Verlauf deut-
liehen wurden und nur gerade an der Peripherie der Iris sind einige Radiärfasern zu sehen, und diese Fasern nehmen auch so viele Schrägrichtungen und biegen so oft in die Sphincterrichtung um, dass sie keinen reinen Dilatator bilden können. Die beiden Zellengürtel der Pars epiblastica iridis sind deutlich von einander abgegrenzt.

12. A r a.

Der Fontana'sche Raum hat eine nicht ganz einfache Gestalt, so dass man ihn in zwei Abschnitte zerlegen muss, um ihn zu beschreiben: zieht man eine Linie von dem hinteren Ende der Iriswurzel zum vorderen Ende des Wulstes, so erhält man einen grösseren hinteren und einen kleineren vorderen Raum. Der erstere hat die Gestalt eines rechtwinkligen Dreiecks, dessen rechter Winkel am Wulste liegt, der andere ist in seiner Form dadurch bedingt, dass die Iriswurzel, die Richtung der Grundplatte verlassend, sich dem Wulste nähert, so dass der Eingang in den
Fontana'schen Raum verengt wird. Der Raum ist mit Gewebe durchzogen und letzteres ist vorn weitmaschig, hinten dagegen kleinmaschig; es ist jedoch nicht wie bei der Mehrzahl der untersuchten Vögel ein starker Faserrzug da, der vom Wulst in den Faltenstamm überginge. Die vordersten an der Pforte des Fontana'schen Raumes liegenden Bündel gehen in einer gleich noch näher zu schildernden Weise auf die Irisvorderfläche über und vereinigen sich mit der dort befindlichen Bindegewebsschicht. Die unmittelbar dahinter liegenden, auch noch zur Iris tretenden Bündel hängen grossentheils mit Fasern des Dilatator zusammen.

Die Iris ist breit auf meinen Präparaten. Nicht weit vom Ciliarrande ist sie dick und nimmt allmählich gegen den Puppularrand hin ab. Die Iriswurzel und die äussere Fläche des an den Fontana'schen Raum angrenzenden ciliaren Abschnittes sind durch kegelförmiige Vorsprünge ausgezeichnet, was auch so ausgedrückt werden kann, dass die vorderen Fibrillenbündel des Fontana'schen Gewebes sich verbreitern, um sich in Form von Kegeln hier zu befestigen. Das Gefüge der Iris ist dicht, indem sowohl Stroma wie Muskelfasern reichlich entwickelt sind.

Die Sphincterfasern sind fast durch die ganze Irisdicke verbreitet; nur lassen sie an der hintern Fläche der Pars mesoblastica eine Schicht für den Dilatator frei. Die Sphincterfasern liegen etwas zerstreut in der Ciliargegend, werden aber in der Pupillarzone sehr dicht und erreichen hier auch die hintere Fläche.

Der Dilatator bildet eine sehr deutliche, verhältnissmässig dicke Schicht von Fasern, die aber nicht zum Pupillarrande reicht. Wie oben erwähnt, zeigen die Dilatatorfasern eine Verbindung mit dem starken Fontana'schen Gewebe, indem letzteres sich in einzelne Fasern auflöst und in die Iris eintritt. Indem nun der Dilatator in dieser Gegend sich verbreitert und die ganze Irisdicke durchsetzt, strecken sich seine Fasern dem geschilderten Gewebe entgegen, so dass sich Muskelfasern mit Fontana'schen Fasern
Vergl. anatom. Studien über den Accommodationsapparat des Vogelauges. 153

(Fibrillenbündeln) vereinigen, und daraus das unverkennbare Bild eines Muskels mit seiner Sehne entsteht.

Auf der Irisvorderfläche liegt eine dicke Bindegewebsschicht, die mit den vordersten Fontana’schen Bündeln in Verbindung steht.

Das Zwischenstück der Scle ra des Kukuks ist kurz und am vorderen Ende dick. Der Knochenring ist dünn und kurz, so dass er durch einen weiten Abstand von der Hornhautscleragrenze getrennt bleibt. Der Wulst ist ausserordentlich promini rend und fast so breit wie die Scleradicke. In Folge seiner Hervor ragung ist die Sclera an dieser Stelle am dicksten. Die innere Scleraplatte ist dünn und zart. Die Knochenplatten sind dünn und bestehen aus compakter Substanz.

Der Fontana’sche Raum bildet ein langes enges Dreieck, dessen Form ich nicht genau angeben kann, da das untersuchte Auge in seiner Form schlecht erhalten war. Der Raum ist mit Gewebe bis in den hinteren Winkel dicht erfüllt. Die dicksten Faserzüge gehen vom Wulst in den Faltenstamm hinein, andere setzen sich an die Irisvorderfläche an, sodass circa 1/3 der letzteren im Raume liegt. Von der ganzen breiten Fläche des Wulstes gehen dicht gedrängte Fibrillenbündel nach hinten und innen und füllen reichlich anastomosirend den Raum ganz aus.

sich so mit den Dilatatorfasern, dass eine weitere Trennung der Schichten nicht mehr möglich ist. Auf der Vorderfläche der Iris liegt eine dicke, pigmentierte Bindegewebschicht, welche mit den vordersten Fibrillenbündeln des Fontana’schen Gewebes in Verbindung steht.

Das Zwischenstück der Selera ist kurz und dick; am dicksten ist es am vorderen Rande des Knochenringes. Die Knochenplatten sind verhältnismässig lang, reichen weit über die Knorpelschale nach hinten und lassen vorn nur wenig Raum bis zur Hornhautscleragrenze frei. Sie sind dünn und von compakter Substanz gebildet. Die innere Scleraplatte ist am Anfang eben so dick wie die äussere, nimmt aber nach hinten sehr schnell an Dicke ab. Der Wulst ist niedrig und breit.

Der Ciliarmuskel ist kurz, dick in der Mitte und nach beiden Enden zugeschärft. Seine drei Abschnitte sind deutlich. Die vordersten Fasern entspringen gleich hinter der Hornhautscleragrenze etwas vor dem vorderen Rande des Knochenringes.

Der Fontana’sche Raum ist kleiner wie beim letztbeschriebenen Vogel und das Gewebe ist nicht so dicht aber stärker pigmentirt.

Die Falten greifen mit einem langen lentalen Rande weit auf die vordere Fläche der Linse, wogegen ihr Kammerrand kurz ist.

Die Iris kann nicht, wie das bei vielen anderen Vögeln möglich ist, als ein ausschliesslich muskulöses Gebilde bezeichnet werden, da das ausserordentlich starke Bindegewebsstroma sich auf Kosten der Muskulatur breit macht. Das Stroma besteht aus dicken anastomosirenden Fibrillenbündeln, welche Maschen bildend die spärlich vorhandenen Muskelfasern einschliessen.

Der Sphincter liegt in einer Schicht in der vorderen Hälfte der Iris; seine Fasern sind am zahlreichsten unmittelbar neben dem Ciliarrand und nehmen gegen den Pupillarrand hin ab. Es sind auch hie und da circulär verlaufende Muskelfasern in der hinteren Hälfte der Iris zu sehen.

Der Dilatator bildet eine Schicht in der Ciliargegend; aber da seine Fasern, einige gleich am Ciliarrande, andere weiter innen in die Sphinctergegend umbiegen, so ist diese Schicht nur schmal.
15. Crotophaga ani.

Die Falte legt sich mit einem langen Rande an die Linse. Die übrigen Ränder sind kürzer.

Die Iris besitzt auch hier ein starkes Bindegewebsstroma, welches in seinen grossen Maschen die Muskelfasern enthält. Der Sphincter besteht aus grossen Muskelfasern, welche etwas dichter liegen wie beim letztbeschriebenen Vogel. Der Dilatator liegt als eine dünn Schicht an der hinteren Fläche der Pars mesoblastica iridis und reicht fast bis zur Pupille.

Die Hornhaut ist sehr stark gewölbt, jedoch in der Mitte weniger als an den Seiten.

Das Zwischenstück der Sclera ist aussen leicht concav. In Folge der unsymmetrischen Ansetzung der Hornhaut ist es an der temporalen Seite fast zweimal so lang als an der nasalen. Es
ist überhaupt sehr lang und am vorderen Rande des Knochenrandes sehr dick. Der Abstand des letzteren von der Hornhautscleragrenze beträgt an der temporalen Seite ein Drittel der ganzen Länge des Zwischenstückes; an der nasalen Seite viel weniger; zugleich ist hier diese Partie dicker. Der Knochenring schärft sich nach beiden Rändern hin zu; er reicht sehr weit über die Knorpelschale nach hinten.

Der Ciliarmuskel ist dünner und etwas länger an der temporalen Seite wie an der nasalen. Er fängt hinter dem Wulste und vor dem vorderen Rande des Knochenringes an; seine Faserrichtung lässt sich klar übersehen, da die Muskelfasern locker liegen und durch Bindegewebe nicht verdeckt sind. Es zeigt sich nun, dass, obwohl die drei Abschnitte, besonders an der nasalen Seite, unterschieden werden können, diese doch in der Mitte keine Ansätze an festen Augenteilen finden, sondern dass an die zuge spitzten Muskelfasern sich dünne Faserbündel des Bindegewebes anschliessen, um nach Art von Zwischensehnen eine Verbindung mit andern Muskelfasern zu vermitteln, und dass auch manchmal Muskelfasern unmittelbar aus einem Abschnitt in einen andern übergehen.

Der Fontana’sche Raum ist um etwa ein Viertel länger an der temporalen wie an der nasalen Seite. Die äussere und innere Seite sind fast gleich lang, die vordere dagegen misst nur $\frac{1}{4} - \frac{1}{6}$ der Länge der beiden anderen. Der Raum ist daher lang und eng. Er ist gänzlich, bis in den hintern Winkel, von Gewebe erfüllt. Vom vorderen Ende des Wulstes gehen Fibrillenbündel einwärts und rückwärts und verflechten sich mit der Grundplatte dicht hinter der Iriswurzel. Durch diesen Zug wird der Raum in zwei Räume getheilt, in ein vorderes kleines Dreieck, welches etwa
Vergl. anatom. Studien über den Accommodationsapparat des Vogelauges. 157

\(\frac{1}{3}\) des ganzen Raumes bildet, und ein hinteres grosses Dreieck. Das erstere enthält dünne Faserzüge, die sich so weit auf die Irisvorderfläche auflegen, dass von dieser etwa der vierte Theil in den Raum hineingezogen wird. Das hintere Dreieck ist mit feinfaserigem, reichlich anastomisirendem Gewebe gefüllt.

Die Falten sind am stärksten entwickelt an der temporalen Seite; die Winkel, welche der Linsenrand einer Falte mit den beiden anstossenden Rändern bildet, sind fast rechte. Der genannte Rand trägt sekundäre Erhebungen (Papillen).

17. Ictinea plumba.

Der Ciliarmuskel ist lang und gut entwickelt. Er ist etwas über ein Drittel länger an der temporalen Seite. Er entspringt dicht hinter dem Wulst und vor dem Knochenringe und reicht an der temporalen Seite rückwärts bis hinter den vorderen Rand der Knorpschale, an der nasalen dagegen gerade bis zur Knorpschale. Der Crampton'sche Abschnitt bildet den grössten Theil. Die Fasern verlaufen vorn schräg, d. h. von innen vorn nach hinten ausser. Sie liegen locker, so dass sie einzeln genau zu verfolgen sind, und es zeigt sich auch hier, dass an die zugespitzten Enden der Muskelfasern sich dünne Bindegewebsbündel als Sehnen ansetzen, welche die Verbindung zwischen dem Crampton'schen und Brücke'schen Muskel vermitteln. Dieses lockere meridionale faserige Gewebe, welches die Lücke zwischen dem hintern Ende des einen Muskels und dem vorderen des andern ausfüllt, kann thatsächlich nicht als ein Teil der Sciera angesehen werden, was durch meine Präparate besonders deutlich wird, da an einigen dieser Enden dieses Zwischengewebe von der Sciera losgelöst ist und das Aussehen einer Muskelschne unverkennbar zeigt. Da wo der Nerv im Muskel liegt, hat der letztere ein gefiedertes Aussehen.

Die Falten haben dieselbe Form und dasselbe Aussehen wie bei Buteo vulgaris.

Die Iris ist auf meinen Präparaten schmal und dünn und besitzt eine schwache Muskulatur. Die Sphincterfasern sind durch die ganze Irisdicke verbreitet, spärlicher hinten und dichter in der Pupillargegend. Die Dilatatorfasern sind sehr spärlich, bilden aber eine Schicht in den Ciliaren der Iris. Die Iris ist reichlich mit Nerven versorgt, deren kleine cirellär verlaufende Aestchen in der ganzen Irisdicke sichtbar sind. Ausserdem ist auf der Irisvorderfläche eine ausserordentlich dicke Schicht von pigmentirtem Binde-

18. Strix bubo.

An dem Auge des Uhu, welches durch seine hohe, ja man möchte sagen übertriebene Entwicklung die Forscher von jeher angezogen hat, fällt insbesondere die Länge und Gestalt des Zwischenstückes auf, welches, um eine Ausdrucksweise von Leuckart zu wiederholen, das Auge einem Operngucker ähnlich macht; daneben die erhebliche Asymmetrie, welche sich in einer weitgehenden Verschiedenheit der nasalen und temporalen Seite ansprägt; und endlich die Ungleichheit des senkrechten und horizontalen Durchschnittes. Sömmering\(^2\) gibt 40,90 als senkrechten und horizontalen Durchmesser ohne Rücksicht auf den letzterwähnten Umstand; H. Müller\(^3\) dagegen 41,5 für den horizontalen und 35 für den senkrechten Durchmesser. Dies stimmt nahezu vollkommen mit meiner in der oben gegebenen Tabelle (s. S. 131) niedergelegten Messung. Den Durchmesser der Hornhaut, welchen Sömmering\(^3\) zu 23,68, H. Müller zu 23,5 bestimmt haben, finde ich nach sorgfältiger Untersuchung an zwei Augen 25 mm gross.

Mit Rücksicht auf den feineren Bau dieser Theile ist Folgen-

Der Ciliar'muskel ist sehr lang und eigenthümlich gestaltet, wie die Abbildung zeigt. Er hat seinen vorderen Ansatz in einem lockern Gewebe, welches an den Hornhautrand und den Wulst anstösst und nach aussen von letzterem liegt, also zwischen den Wulst und den Beginn der äusseren Scleraplatte eingeschlossen ist; hier beginnt er mit einem lockeren Gewebe am inneren Hornhautende ausserhalb eines dicken Bande, wird nach hinten allmählich dünner, hört auf und beginnt von Neuem, um fast bis zur Knorpelschale zu verlaufen. Dies sind die beiden Stücke des Muskels, das Crampton'sche und das Brücke'sche, welche schon andere Autoren, z. B. Exner (s. unten) beschrieben haben; der Müller'sche Muskel fehlt. Die Fasern sind dick und stehen dicht. Von den Fasern des Crampton'schen Muskels verlaufen diejenigen, welche der inneren Scleraplatte anliegen, dieser parallel, die übrigen nähern sich in schräger Richtung der Sclera, um dann an dieser hinzuziehen, ihre Biegung mitmachend. Alle endigen spitz, und ein Bindegewebszug als Sehne nimmt sie auf, um in einem Abstand, der dem zehnten Theile des Gesammtmuskels gleichkommt, weiter hinten den Fasern des Brücke'schen Muskels zum Ursprunge zu dienen. Der ciliare Muskel des Uhu-Auges besteht demnach aus einem vorderen vorn dicken, rückwärts scharf
zugespitzten und aus einem hinteren kurzen dünnen Theile, sowie aus einer langen Zwischensehne.

Die Falte erreicht hier ihre höchste Ausbildung unter allen von mir untersuchten Vögeln. Ihr Linsenrand ist etwa dreimal so lang wie ihr Kammerrand; er greift daher vorn zwischen Iris und Linse weit an der Vorderfläche der letzteren hin und überschreitet hinten erheblich den Aequator, und der Petit'sche Raum ist, wie Angelucci¹¹) meint, und wie auch ich glaube, bis hinten von den Falten eingeschnitten; was jedoch, wie aus den oben (Seite 150) bei der Beschreibung des Taubenauges gemachten Angaben und aus verschiedenen meiner Abbildungen (Figg. 2, 3, 6, 12) hervorgeht, nicht für andere Vögel gilt. Der Linsenrand der Falte ist von papillenartigen Wülsten bedeckt, wovon Fig. 16 auf Grund eines gegen die Linsenoberfläche senkrecht gerichteten und mehrere Falten quer treffenden Schnittes ein Bild gibt. Eine vollkommen ausreichende Vorstellung erhält man jedoch erst durch ein Präparat des ganzen vorderen Uvealabschnittes, welches die Falten nach Herauslösung der Linse zeigt. An einem solchen erscheint ein durch sämtliche Linsenränder der Falten gebildeter gewölbter Raum, in welchem die einzelnen Falten nicht glatt, sondern von Papillen bedeckt sich zeigen.

Die Iris zeichnet sich auffallenderweise durch schwache Muskulatur aus und besitzt eine besondere Formation sehr merkwürdiger Zellen. Die Verbindung der Iriswurzel mit der Grundplatte des Corpus ciliare ist, wie Sömmering schon bemerkt hat, dünn. Vom ciliaren Rande an erreicht die Iris schnell ihre
größte Dicke und schärf sich gegen den pupillaren Rand langsam zu. Die schwache Muskulatur beschränkt sich auf die hintere Lage. Die Muskelfasern fangen innerhalb des Ciliarrandes an und bilden eine Schicht von etwa einem Fünftel der Irisdicke; die Faserrichtung ist zuerst fast radiär, dann schräg und in der Pupillargegend fast circulär. Im Ganzen macht auf mich der Muskel den Eindruck eines Dilatators, und so auffallend es ist, muss ich doch erklären, dass ich bei keiner der von mir untersuchten Eulenarten einen deutlichen Sphincter gefunden habe. Statt dessen finde ich beim Uhu Capillaren (besonders auf der Vorderfläche) und grosse Zellen (s. Fig. 15), welche Fettzellen am ähnlichsten sehen. Diese Zellen nehmen 4/5 der Dicke der Iris ein und sind in Reihen angeordnet, reichlicher im ciliaren Abschnitt und abnehmend gegen den pupillaren Rand. Sie messen etwa 0,02 mm im Durchmesser und enthalten gewöhnlich, aber nicht immer, einen Kern, welcher manchmal in der Mitte, manchmal an der Seite liegt. Der Zelleninhalt scheint aus kleinen glänzenden Tropfen zu bestehen. Man trifft diese Zellen in verschiedenen Zuständen, welche vielleicht Stadien eines Vorganges sind, deren hauptsächlichste und durch die Abbildung wiedergegebene daher hier geschildert werden sollen. 1) Grosser Kern, gleichmässig gekörnter Zelleib ohne glänzende Tropfen; 2) grosser Kern, gekörnte Randzone, glänzende Tropfen in einer den Kern umschliessenden Zwischenzone; 3) kein Kern, keine gekörnte Randzone, glänzende Tropfen im ganzen Raume der Zelle. Da die untersuchten Augen durch Alcohol und durch Aether behufs der Celloidineinbettung hindurchgegangen waren, so konnte ich trotz verschiedener Färbungen und trotz der drei möglichen Schnittrichtungen, welche ich zur Anwendung brachte, nicht alles aufklären; frische Augen konnte ich leider nicht erhalten.

Ich habe dieselben Zellen auch bei den andern Eulenarten gefunden, nur etwas kleiner und bräunlich pigmentirt. Erwähnt finde ich sie nur bei Leuckart, welcher sagt: "Die Vögel mit gelber Iris zeigen gelbe Fetttropfen von auffallender Grösse, die oftmals gruppenweis von Gefässen umzogen sind und bei schwacher Vergrösserung dann ein zierliches Aussehen darbieten." Ein grosses Blutgefass, über dessen Verlauf Serienschnitte Auskunft geben, erhebt sich, aus der Grundplatte des Corpus ciliare kommend, an der Iriswurzel frei in die vordere Kammer, von pig-
mentirtem Gewebe bekleidet und kehrt im Bogen zur vorderen Fläche der Iris zurück.

19. *Noctua cunicularia.*

Die Augen sämtlicher Eulenarten stimmen so sehr untereinander und mit dem Uhu-Auge überein, dass ich mich bei den nun folgenden Beschreibungen kurz fassen kann.

Speziell kann für Noctua cunicularia alles gelten, was soeben gesagt worden ist über Hornhaut, Zwischenstück der Sclera, Knochenring, Wulst, innere Scleraplatte und ciliaren Muskel, jedoch mit folgenden Abänderungen: das Auge ist noch stärker asymmetrisch wie das des Uhu, indem das Zwischenstück an der temporalen Seite um ein Drittel länger ist wie an der nasalen; die Knochenplatten sind kürzer und ihre kompakten Wände dicker; die Fasern des Muskels liegen sehr locker, so dass sie einzeln in ihrem Verlaufe genau verfolgt werden können; der Muskel ist kürzer und dicker an der temporalen wie an der nasalen Seite.

Der Fontana'sche Raum ist im Auge der Erdeule verhältnismässig länger und enger wie in dem des Uhu, da einer gleich langen äusseren und inneren Seite eine vordere mit nur \(\frac{1}{7} - \frac{1}{8} \) der Länge der beiden anderen gegenübersteht. Von dem Gewebe kann das beim Uhu Gesagte gelten.

Ebenso von der Faltenform.

Die Iris zeigt die gleiche Anordnung der Muskulatur, die gleichen Schicht rund der Zellen, die gleichen Gefässe wie die des Uhu.

20. *Glaucidium ferrugineum.*

Ueber das Auge dieser kleinen Eulenart kann ich mit wenig Bemerkungen hinweggehen.

Die Hornhaut ist kleiner als die der anderen Arten. Der ciliare Muskel ist schwach und die Zwischensehne lang, verglichen mit der bei den eben beschriebenen Vögeln.

In der Iris liegen die eigenthümlichen Zellen so dicht, dass für Muskelfasern und Blutgefässse nur wenig Platz übrig bleibt.

Eine bemerkenswerthe Eigenthümlichkeit gegenüber den drei vorhergehenden Eulenarten liegt darin, dass die Schicht rund der Zellen in der Iris fehlt; wenigstens habe ich sie nicht gefunden,
dafür aber dichtes dunkles Pigment, welches den Bau der Iris verdeckt, speziell die Anordnung des Muskels, den ich nur in der pupillaren Zone bemerkt habe. Die Iris ist auf meinen Präparaten breit und dünn, am Pupillarrande so sehr, dass hier die Pars epiblastica an Dicke die Pars mesoblastica übertrifft. Ein bogenförmig in die Kammer erhobenes Gefäss habe ich auch hier an der Iriswurzel getroffen.

Im Uebrigen habe ich noch zu bemerken, dass alle drei Durchmesser gleich lang sind; dass die Hornhaut verhältnissmässig gross, das Zwischenstück der Sclera auch hier sehr unsymmetrisch, der Wulst klein ist. Der ciliare Muskel gleicht dem von Glaucidium und der Fontana'sche Raum samt Gewebe dem des Uhu.

22. Rhea americana.

Das Zwischenstück der Sclera ist kurz und dick. Der Knochenring ist dick aber kurz, indem er nur die hinteren $\frac{2}{3}$ des Zwischenstückes einnimmt. Beide Scleraplatten sind am vorderen Ende des Zwischenstückes durch pigmentirtes Gewebe geschieden. An dieser Stelle ist die innere Scleraplatte sogar dicker wie die äussere, nämlich um den dritten Theil. Während aber die äussere nach hinten zunimmt, so dass sie ihre grösste Dicke am vorderen Rande des Knochenrings erreicht, fällt die innere gleich hinter dem Wulste zu einer dünnen Schicht ab und verläuft, allmählich noch mehr verdünnt, bis zum hinteren Ende des Muskels. In dem fibrösen Gewebe des Zwischenstückes ist auch hier wieder ausser den vorwiegend meridional verlaufenden Zügen und den circulären Bündeln an der Innenseite des Knochenringes ein mehr lockerer meridionaler Zug zu bemerken, welcher unmittelbar an die Aussenseite der Muskelnische grenzt. Die Knochenplatten sind vorn dick, nach hinten zugeschärft und legen sich weit über die Knorpelschale. Sie bestehen aus compakter Substanz mit wenig Markräumen, enthalten ausserordentlich viele Blutgefässkanäle und greifen sehr weit über einander. Der Wulst ist klein aber hoch.

Die Muskelnische reicht weit nach vorn. In Uebereinstimmung damit liegt das vordere Ende des Muskels weit vor dem des Knochenringes, dicht hinter der Hornhautscleragrenze. Der Muskel ist lang, vorn dick und nach hinten verschmälernt. Die vordersten Fasern verlaufen schief von innen vorn nach aussen hinten und indem diese Richtung allmählich in eine rein meri-
Vergl. anatom. Studien über den Accommodationsapparat des Vogelauges. 165
dionale übergeht, bietet der vordere Abschnitt das Aussehen eines
Fächers. Es gibt also keine Scheidung in Abschnitte, vielmehr erscheint der Muskel anatomisch als eine Einheit.

Der Fontana'sche Raum bildet ein weites Dreieck, indem die vordere Seite fast so lang ist, wie die beiden anderen. Gewebe scheint nur in seinem vorderen Abschnitt enthalten zu sein, jedoch darf ich nicht unterlassen einzustehen, dass eine ringförmige Luftblase sich bei der Celloidineinbettung in ihm gefangen hatte, welche auf allen meinen Schnitten wiederkehrte und dadurch störend war, dass sie die Bälkchen etwas verschoben hatte. Ungewöhnlich dicke Fibrillenbündel, an denen ovale Kerne reichlich zu bemerken sind, gehen vom Wulste zum Faltenstamm und zum vorderen Theile der Grundplatte des Corpus ciliare. Die dahinter gelegenen Fasern sind feiner und mässig verzweigt.

Der Linsenrand der Falte ist kurz und ziemlich glatt, von der geringe Entwicklung seitlicher Anhänge, worüber der Querschnitt Aufklärung gibt, in Uebereinstimmung steht.

Die Iris, welche auf meinen Präparaten breit erscheint, hat ihre grösste Dicke in der Mitte und schärft sich nach beiden Rändern hin zu. Ihre Muskulatur ist stark und so besonders angeordnet, dass ihr eine genauere Schilderung zu Theil werden muss. Der Sphincter übertrifft wie gewöhnlich den Dilatator, aber er ist mit diesem in einer solchen Weise vermischt, dass sich eine deutliche Trennung in zwei Schichten nicht machen lässt. Der Sphincter findet sich in der ganzen Breite der Iris, aber so, dass man veranlasst ist, zwei Zonen desselben, eine ciliare und eine pupillare zu scheiden; erstere schneidet mit dem Ciliarrande der Iris selbst ab und nimmt ein Viertel der Breite nach ein, letztere reicht von dem Pupillarrande bis zur Mitte; erstere beschränkt sich der Dicke nach auf den vorderen Theil der Iris, letztere fällt am pupillaren Rande die ganze Dicke der Pars mesoblastica, zieht sich aber weiter nach aussen auch auf die vordere Hälfte zurück. Der Dilatator ist in der Nähe des ciliaren Randes allerdings als gesonderte dicke Schicht abzugrenzen, aber weiter nach innen führt er vollkommen aneinander, und seine Fasern schieben sich zwischen die des Sphincter hinein; auch schrägverlaufende Fasern kommen vor. Endlich ist noch hervorzuheben, dass in der ciliaren Hälfte der Iris die Fasern an Dicke bedeutend die in der pupillaren Hälfte übertreffen.
Schlussbetrachtungen.

An die vorausgehende systematische Darstellung schliesse ich einige Bemerkungen, bei denen ich mich auf Ciliarmuskel, Iris und Fontana'sches Gewebe beschränke.

1. Der Ciliarmuskel.

Die morphologische Betrachtung steht dem Ciliarmuskel mit der Frage gegenüber, ob derselbe als ein zusammenhängender Muskel oder als eine Muskelgruppe anzusehen sei; oder, wenn sich eine klare einsinnige Antwort hierauf nicht geben lässt, in welchem Grade eine Sonderung in Abschnitte nachweisbar und bei welchen Vögeln sie vorhanden sei. In der Literatur finden beide Meinungen ihre Vertretung: Crampton^15), Brücke^16), H. Müller^17), Leuckart^18) und Exner^19) beschreiben die einzelnen Abschnitte als getrennte Muskeln; wogegen Donders^20), Mannhardt^21) und Nuel und Hosch^22) einen einzigen Muskel finden. Alle diese Forscher waren von physiologischem Interesse geleitet, und es lässt sich nicht verkennen, dass die Antwort auf die gestellte Frage anders ausfiel, je nachdem Neigung vorhanden war, das anatomische Bild zu einer willkommenen Grundlage durchsichtiger physiologischer Darstellung zu machen, oder daneben noch den morphologischen Thatsachen ihre Unabhängigkeit zu lassen. Uebrigens kann es nach der physiologischen Seite hin beruhigend wirken, dass wir eine physiologische Theorie — die von Exner — besitzen, nach welcher es auf das Gleiche herauskommt, ob der ciliare Muskel des Vogelanges eine Einheit oder eine Dreieinheit ist.

Die vorliegende Arbeit nun beschränkt sich ganz auf die Darstellung der morphologischen und speziell, wie eingangs erwähnt, der topographischen Verhältnisse. Die einzige physiologische Bemerkung wird da, wo sie sich wirklich aufdrängt, im Anschluss an das Gewebe des Fontana'schen Raumes gemacht werden.

15) Crampton, Thomson's Annalen T. I.
16) Brücke, Müller's Archiv 1846 S. 375.
18) Mannhardt, Arch. f. Ophth. V. III 43. V. IV 269.
Morphologisch, wenn man für die Gesammtheit der im Vorhergehenden dargestellten Verhältnisse einen Ausdruck sucht, muss man sagen: das Vogelauge besitzt einen ciliaren Muskel. Dieser ist, verglichen mit dem des Säugethierauges, stets lang, zuweilen sehr lang (Raubvögel), er kann dünn (Ente) oder dick (Taube) sein, bis an die Hornhautscleragrenze rücken (Crax Blumenbachii) oder weit hinter derselben zurückbleiben (Pinguin), vorn seine grösste Stärke besitzen (Strauss) oder hier ähnlich wie am hintern Ende zugeschärft sein (Cassicus). Der Trennung in die drei Abschnitte, den Crampton'schen, Müller'schen und Brücke'schen habe ich, wo es immer anging, nachgespürt und darüber das einzelne oben verzeichnet. Es ergibt sich dabei aber kein einfaches anatomisches Verhalten, besonders kein so einfaches wie derjenige, welcher ein für das Vogelauge im Allgemeinen gültiges Schema aus der Literatur kennt. Die Merkmale nämlich, nach denen Trennungen in Abschnitte an dem ciliaren Muskel der Vögel gemacht werden können, sind von verschiedener Art: Faserrichtung, Ansatz, Längsspaltung und Trennung der Quere nach. Für alle diese Umstände finden sich im Vorausgehenden Beispiele; aber gegenüber der Fülle dieser Beispiele erkennt man eben, dass, wenn man an dem ciliaren Muskel eines bestimmten Auges die Trennung in Abschnitte zuerst auf Grund eines und dann auf Grund eines andern Merkmale vornehmen würde, sich die Resultate nicht decken würden. Unter den Ursachen der wechselnden Anordnung spielen auch unwesentliche, d. h. aus der Funktion des Muskels selbst nicht hervorgehende, eine Rolle; in erster Linie ist hier die Lage des Nervenstammes resp. Plexus zu berücksichtigen, welcher entweder in der Muskelnische selbst oder in der innern Scleraplatte seinen Platz findet und eine Störung verursacht, die zuweilen nur durch Einschiebung einer von der Innenwand der Muskelnische abgezweigten Bindegewebsplatte gut zu machen ist, worauf sich dann die Anordnung eines gefiederten Muskels gründet, wie sie oben öfters erwähnt worden ist.

Der Crampton'sche Muskel speciell soll dadurch charakterisirt sein, dass seine Fasern schief von vorn und innen nach hinten und aussen laufen und sich an die Sclera befestigen. Dies trifft bei fast allen Vögeln zu, aber trotzdem ist eine scharfe Sonderung von einem weiter nach hinten gelegenen Abschnitt, dem Müller'schen Muskel damit nicht gegeben. Vielmehr zeigt sich in Wahr-
heit, dass die Richtung der vordersten Fasern zwar schief ist, aber dass meistens die folgenden Fasern ganz allmählich abweichen, bis eine rein meridionale Richtung erreicht ist; und dass man von Fasern, welche sich an die Sclera selbst (äussere Scleraplatte) zu befestigen scheinen, ganz allmählich zu solchen gelangt, welche in einem lockern, an der Aussenwand der Muskelnische meridional verlaufenden Bindegewebe ihre Selne finden. In dieser Hinsicht bestehen die Angaben von Nuel und Hósch noch immer zu Recht.

2. Iris.

Obgleich die Iris oben als ein muskulöses Gebilde bezeichnet wurde, so kann doch, wie aus der systematischen Beschreibung hervorgeht, weder behauptet werden, dass die Muskulatur immer den gleichen Grad der Entwicklung habe, noch dass ausser ihr nicht andere wesentlich an der Bildung der Iris betheiligte Elemente vorkommen. Ein gewisses Wechselverhältniss besteht zwischen Muskulatur und Bindegewebe: bei starker Muskulatur ist das Bindegewebe schwach (Taube) und umgekehrt (Fasan); doch kommen auch Fälle vor, wo beides kräftig entwickelt ist (Ara).

Besondere Gewebsformationen bilden zuweilen vor der muskulösen Lage der Iris eine besondere Schicht, die sogar an Dicke die erstere übertreffen kann (Uhu); ob diese Formationen nur der Pigmentirung dienen, bleibt hier dahingestellt.

Für die Muskulatur kann als typisch angenommen werden ein Sphincter, der vom pupillaren bis zum ciliaren Rande reicht, in der Nähe des ersteren die ganze Dicke einnimmt, im Uebrigen aber an der hintern Fläche eine Schicht für den Dilatator frei lässt; ein Abbiegen von Dilatatorfasern nach vorn in die Sphincterfaserschicht kann gleichfalls als typisch gelten. Doch sind, wie sich gezeigt hat, die Abweichungen von diesem Typus bedeutend, ja fast extrem. Der Eintritt von Dilatatorfasern zwischen die des Sphincter und die schräge Verlaufsrichtung kann so bedeutend werden, dass dadurch streckenweise das Bild eines gesonderten Sphincter und Dilatator ausgelöscht wird: hierzu tritt die Ueberkreuzung zweier schiefer Systeme beim Pinguin. Der Dilatator kann äusserst schwach sein (Taube); und er scheint allein als klar ausgesprochener Muskelfug zu existiren (Eulenarten).

3. Das Fontana'sche Gewebe.

Das den Fontana'schen Raum erfüllende Gewebe, welches
ich übrigens nach den Ergebnissen der Untersuchung im frischen Zustande und nach Behandlung mit Essigsäure nicht für elastisch halte (elastisch im chemischen Sinne), ist im hintern Theile des Raumes, wo es häufig auch fehlt, von sekundärer Bedeutung; mechanisch wesentlich sind diejenigen Abschnitte, welche aussen ihre Stütze an dem ringförmigen Wulste finden, welcher an der Hornhautscleragrenze liegt und zweifellos auch die Bedeutung hat, dem erwähnten Gewebe zur Stütze zu dienen. Es ist sicher, dass der wichtigste Theil dieser Bälkchen auf den vorderen Abschnitt der Grundplatte und durch diesen hindurch auf die Faltenstämme wirkt; zuweilen ist er sogar allein vorhanden (Eulenarten, Strauss). Darf man aber desswegen denjenigen Theil des Gewebes übersehen, der davor liegt und sich mit der Iriswurzel und der Vorderfläche der Iris, zuweilen bis zur Mitte (Pinguin) verbindet? Dieses vordere Gewebe ist fast immer vorhanden; es ist zwar oft zart (Ictinea) oder doch locker, aber man erkennt bestimmte Beziehungen auf dasselbe im Bau der vorderen Fläche der Iris, wo öfters eine reichlichere Anhäufung von Bindegewebe da zu beobachten ist, wo diese Bälkchen sich befestigen. Am weitesten geht jedoch die Beziehung zwischen diesem Gewebe und der Iris bei Ara, wo die vorderen Bälkchen kaum von den zur Grundplatte gehenden unterschieden sind, der ciliare Abschnitt der Iris ihnen eine besonders abgesetzte Fläche mit kegelförmigen Erhebungen zuwendet und die Fasern des Dilatator iridis sie als Sehnen benutzen. Das anatomische Bild gestattet hier, eine vom Pupillarrande bis zum Wulst des Hornhautsclerarandes gehende Beziehung der muskulösen und bindegewebigen Kräfte anzunehmen, woran leicht — was jedoch ausserhalb des Rahmens dieser Arbeit liegt — Ideen über ein complicirtes Spiel der Synergie der Kräfte der Iris und des Corpus ciliare angeschlossen werden könnten, wobei auch der von mir allein beim Ara gefundenene ringförmige ciliare Muskel eine Rolle zu spielen hätte. Immerhin würden wir um der physiologischen Klarheit willen den vorderen oder Irisabschnitt des Fontana'schen Gewebes ("Irisfortsätze") von dem hinteren oder ciliaren scheiden, eine Trennung, welche ebenso, wie die speziellen Angaben gezeigt haben, auf Grund der histologischen Untersuchung zu machen ist.

Die vorliegende Arbeit ist unter Leitung des Herrn Doctor H. Virchow im Berliner anatomischen Institute gemacht worden.
und ich möchte an dieser Stelle dem Genaunten meine aufrichtigste Dankbarkeit für seine freundliche Unterstützung und immer bereitwillige Anregung aussprechen.

Auch Herrn Cand. med. Zimmermann habe ich für die treu ausgeführten Zeichnungen bestens zu danken.

Die Hauptbelegpräparate für die in vorstehender Arbeit mitgeteilten Befunde sind der Sammlung des Berliner anatomischen Instituts einverleibt worden.

Erklärung der Abbildungen auf Tafel XII, XIII und XIV.

Fig. 2. Anas anser domestica. Vergr. 20 × Embryograph.

Fig. 3. Ardea egretta. Vergr. 25 × Embryograph.

Fig. 4. Gallus domesticus. Vergr. 25 × Embryograph.

Fig. 5. Crax Blumenbachii. Vergr. 20 × Embryograph.

Fig. 6. Coturnix communis. Vergr. 30 × Embryograph.

Fig. 7. Columba domestica. Vergr. 30 × Embryograph.

Fig. 9. Dasselbe. Iriswurzel und Faltenstamm. Syst. 7, Oc. III. Leitz. Str. Stroma. Die übrigen Bezeichnungen wie oben.

Fig. 10. Dasselbe. Faser des Fontana’schen Gewebes. Syst. 7, Oc. III. Tubus ausgezogen.

Fig. 11. Ara (species). Vergr. 20 × Embryograph.

Fig. 12. Ictinea plumba. Vergr. 20 × Embryograph.

Fig. 13. Strix bubo. Vergr. 7,5 × Embryograph.

Fig. 14. Dasselbe. Vergr. 4 × Embryograph.

Fig. 15. Dasselbe. Zellen der Iris. Syst. 7, Oc. III. Ausgezogen. Bg. Bindegewebe, Fe. fettrartig glänzende Tropfen, K. Kern, Rz. Randzone von Protoplasma.

Fig. 16. Dasselbe. Querschnitt der Falten mit Linsenkapsel. Syst. 3, Oc. III. Gy. Papillenartige Wülste (Gyril)

Fig. 17. Noctua cunicularia. Vergr. 15 × Embryograph.
Ueber den feineren Bau des Pferdehufes.

Von

Dr. C. Nörner.

(Arbeit aus dem thierphysiologischen Laboratorium der landwirthschaftlichen Hochschule zu Berlin.)

Hierzu Tafel XV.

Anatomie der Huflederhaut.

Bevor wir auf den feineren Bau des Pferdehufes näher eingehen, wollen wir uns die groben anatomischen Verhältnisse unseres Organes — soweit dieselben in den Rahmen der uns gestellten Aufgabe gehören — kurz in das Gedächtniss zurückrufen.

Der Fleischsaum erscheint in Gestalt eines wenige mm breiten Streifens; er liegt dicht unter dem behaarten Theile der allgemeinen Decke. Nach rückwärts setzt er sich auf die Ballen (die hintere Partie des Hufes) fort, erreicht hier seine grösste Breite und geht schliesslich in den Fleischstrahl über, um sich in der mittleren Strahlfurche allmählich zu verlieren. Von der unter ihm befindlichen Fleischkrone ist er durch eine deutliche Linie
(der sogenannte Kronenfalz) geschieden. An seinem ganzen Umfang ist er mit kleinen, 1 bis 2 mm langen, fadenförmigen Fortsätzen (Papillen) bedeckt.

Nach abwärts schliesst sich hieran die Fleischkrone (der Kronenwulst), ein ca. 16 bis 20 mm breiter, ringförmiger, halbkugeliger Wulst. Die Fleischkrone beginnt an der Zehe), verbreitert sich ein wenig nach den Sei- ten, um sich gegen die Ballen hin zu versmälen und abzuflachen. An der rückwärtigen Seite des Hufes schlägt sie sich auf die Sohle (die Basis des Hufes) um, bildet einen Theil des Fleischstrahles und geht unmerklich in das Gewebe der Fleischsohle über. Wie schon der Fleischsaum, so ist auch die Fleischkrone rings herum mit dicht gedrängt stehenden, kegelförmig gestalteten Verlängerungen besetzt, nur dass diese Papillen viel stärker und mächtiger entwickelt sind als die des Fleischsaumes. Sie erreichen eine beiläufige Länge von 5 bis 7 und mehr mm. Diese Kronenpapillen bilden auf der unteren Fläche des Hufes an der Seite der gleich zu erwähnenden Fleischblättchen den sogenannten Eckstrebeenteile der Fleischkrone und verschmelzen schliesslich mit den Papillen der Fleischsohle.

Unterhalb der Fleischkrone befindet sich die Fleischwand. Diese bedeckt das Hufbein, dessen Periost sie zugleich bildet, und zum Theil auch die äussere Fläche des dem Hufbeine seitwärts aufsitzenden Hufknorpels. Die Fleischwand unterscheidet sich von der Kronenwulst einmal durch das völlige Fehlen der eben erwähnten Papillen, dann dadurch, dass die Aussenfläche derselben in ihrem ganzen Umfang mit dünnen, dicht nebeneinander stehenden, blattförmigen Gebilden — den Fleischblättchen — besetzt ist. Dieselben erreichen ihre grösste Mächigkeit an der Zehensohle, verlaufen hier in gerader Richtung von oben nach abwärts und bilden daselbst mit der Fleischsohle einen ungefähren Winkel von 45° (Sohlenwinkel). Die parallel zu einander gestellten Blättchen, deren Zahl sich auf 500 bis 600 (Leisering) beläuft, nehmen, je weiter sie sich von der Zehe entfernen und sich den Ballen nähern, eine stetig schräger werdende Richtung an, so dass der Sohlenwinkel immer spitzer wird, während sie sich zu gleicher Zeit mehr und mehr verkürzen. Schliesslich schlagen sie sich am

1) Man theilt den Pferdehuf von vorn nach hinten ein in die Zehen-, Seiten- und Trachtenwand.
rückwärtsigen Teile des Hufes unterhalb der Ballen unter einem spitzen Winkel auf die Sohle über und bilden den Eckstreben-theil der Fleischwand. Sie nehmen nun rasch an Grösse ab und hören endlich auf.

Nach rückwärts geht die Fleischsohle in den Fleischstrahl, welcher wie ein mächtiger Keil von hinten her in sie hineingeschoben ist.

Methode der Untersuchung.

Da die Pferde bereits bei geringen krankhaften Störungen im Innern des Hufes stark lahmen und hierdurch grosse Schmerzen zu erkennen geben, so ist die Annahme gerechtfertigt, dass der Huf der Sitz zahlreicher Nerven sein müsse. Diese zu erforschen resp. die Endigungen derselben klar zu legen, war mit die Hauptaufgabe vorliegender Arbeit. Gerade dieser Theil der Untersuchung war es, welcher wegen seiner bedeutenden Schwierigkeiten, die hauptsächlich auf die Unzuverlässlichkeit unserer heutigen Nervenmittel beruhten, so ungewöhnlich viel Zeit zu seiner Herstellung erforderte.
Da es uns wegen der anzuwendenden Reagentien (Osmiumsäure und Goldchlorid) darum zu thun war, möglichst frisches Material zu erhalten, so wandten wir uns nach der hiesigen Centralrossschlächterei (Greifswalerstrasse) und liessen uns dort das untere Ende eines Vorderfußes — die Untersuchung hat sich nur auf Vorderhüfe beschränkt — von einem eben geschlachteten Pferde bis zum Fesselgelenk abschneiden. Unser Augenmerk war natürlich hauptsächlich darauf gerichtet, einen, soweit dies anging, annähernd normalen, oder sagen wir lieber einen mit nicht allzu groben Fehlern behafteten Huf zu erlangen. Hierauf begaben wir uns sofort nach der neben der Centralrossschlächterei gelegenen Schmiede des Schmiedemeister Hänseler, woselbst uns in freundlicher Weise genügendes Handwerkzeug zur Verfügung gestellt wurde.

Das schwierige und mühsame Geschäft, den Hornschuh zu entfernen, wurde nun in der Weise vorgenommen, dass zuerst mit dem englischen Rinnmesser auf der Hufsohle eine kreisförmige Rinne, die ungefähr einen Daumen breit vom Sohlenrande gleichmässig entfernt war, angelegt und dieselbe bis dicht auf die Fleischsohle vertieft wurde. Diese Rinne wurde bis zu den Eckstreben verlängert und hierauf ungefähr in der Mitte der Trachtewand eine zweite Rinne angelegt, die, an der Krone beginnend, in senkrechter Richtung nach abwärts bis zum Sohlenrande verlief, so dass hierdurch die zuerst angelegte Vertiefung auf der Sohle geschnitten wurde. Dann wurde die ganze Hornsohle, nachdem sie ein wenig, damit die Zange besser greifen konnte, mit einem Hebel von der darunter gelegenen Fleischsohle emporgehoben war, mit der Kneipzange an ihrem vorderen Ende erfasst und durch einen kräftigen Ruck nach rückwärts abgerissen1). Um

1) Hierbei sei kurz erwähnt, dass diese Methode, das Horn von der Fleischsohle zu entfernen, in der Brüsseler Thierarzneischule fast bei allen Nageltritten, die etwas tief gehen und bei denen man grössere traumatische Verletzungen fürchtet, angewendet wird. Dieses Verfahren sieht zwar bei lebenden Pferden etwas roh aus, hat aber das Gute, dass solche Verletzungen, selbst wenn sie bis in das Hufbein sich erstrecken, ungewöhnlich leicht heilen, da man die Wunde besser behandeln kann. Unliebsame Complicationen (Starrkrampf, Necrose und Gangrän) treten hiernach fast nie auf. Die Patienten bekommen einen Druckverband (Splintverband) und können bereits nach
noch das Horn von der Fleischwand zu entfernen, wurde eine weitere Rinne in der Mitte der Zehenwand nach abwärts bis zur Sohlenrinne gezogen und dann das Wandhorn mit der Zange in sanftem Zuge entfernt. Durch diese Methode, das Horn loszulösen, wurden die Weichteile, wie Fleischblättchen und Papillen nach Möglichkeit geschont, und namentlich wurde der Übergang der Fleischblättchen in die Fleischsohle, um den es uns, wie wir bei Besprechung der Nerven sehen werden, ganz besonders zu thun war, unversehrt erhalten, vorausgesetzt, dass keine pathologischen Veränderungen (Verwachsung der Fleischblättchen mit dem Horn u. s. w.) bestanden, wie sich solche bei alten Pferden vielfach finden.

Nachdem das Horn entfernt war, wurden sofort kleine Stückchen der Huflederhaut herausgeschnitten und in die schon bereitstehenden Reagentien (Osmiumsäure und Goldchlorid) gethan.

Was das Pferdematerial betrifft, so konnten leider zum Studium der Nerven, da es sich hierbei für uns um eben getödete Thiere handelte, fast nur alte Pferde, wie sie sich auf der Centralrossschlächterei eben vorfanden, also im durchschnittlichen Alter von 15—18 Jahren, genommen werden. Nur einmal glückte es, ein junges Pferd zu benutzen.

Zur Erforschung des histologischen Baues der Huflederhaut im Allgemeinen wurden hauptsächlich Hufe junger Pferde verwendet. Hierbei wollen wir gleich bemerken, dass sich die Arbeit lediglich auf das Stadium der Huflederhaut und der sie bedeckenden Hornschicht beschränkt.

Kleine Stücke derselben wurden entweder in toto in Picrocarmin (nach Ranvier; bezogen von Dr. Pelletan in Paris) gefärbt und zwar blieben sie mehrere Tage (bis zu 8 Tagen) in dieser Farbstärke liegen; dann wurde gehärtet (in Alkohol), mit Celloidin auf Kork geklebt und mit dem Mikrotom geschnitten. Die Schnitte wurden nachher für kurze Zeit in mit Pierinsäure schwach angesäuertes Wasser gethan, um eine bessere Gewebsdifferenzierung zu erzielen. Eingebettet wurde in Canadabalsam oder in Ameisensäure haltigem Glycerin (nach Ranvier). Oder aber die Stücke wurden erst geschnitten und dann gefärbt (Picrocarmin, ammoniakalischer Carmin, Safranin etc.). Recht brauch-

wenigen Tagen mit diesem Verbande wieder ihren gewohnten Dienst verrichten.
bare Bilder lieferten Doppelfärbungen von Picrocarmin mit Bismarckbraun, Hämatoxylin (Grenacher und Weigert), Aluncochenille (Csokor) etc.¹)

Zur Untersuchung der Nerven wurden die meisten der empfohlenen Methoden²) nach einander in Anwendung genommen, jedoch nur wenige lieferten nennenswerte Resultate. Dadurch dass das Färben der Nerven namentlich im Anfang vielfach missglückte, wurde die Arbeit wesentlich in die Länge gezogen. Am erfolgreichsten von allen den probirten Methoden der Untersuchung erwies sich ein Färben kleiner, dem frisch getödeteten Thiere³) entnommener Stücke der Huflederhaut in Osmiumsäure (1:100) während 24—48 Stunden; dann Auswaschen und Färben in toto in Picrocarmin. Diese Methode hat den grossen Nachtheil, dass die schwarzgefärbten Nervenfäden, wenn die Präparate nicht mit Picrocarmin tingirt sind (hiernach scheinen sie sich sehr gut zu halten), nach und nach verblasen und unkenntlich werden.

Auch die Goldmethode führte vielfach zum Ziele. Dieser haftet nun leider der Uebelstand der Unbeständigkeit an; die Präparate werden zu ungleichmässig gefärbt; auch misslingt sie sehr oft. Das Einlegen frischer Stücke in Goldchlorid (1:100) für kurze Zeit (10 bis 15 Minuten), wie dies von den meisten Autoren empfohlen wird, war für ein Färben der Hufnerven ganz unzureichend. Wirklich gute Bilder wurden nur erzielt, wenn man die frisch entnommenen, möglichst kleinen Stücke in Ameisensäure (1 Theil Säure zu 2 Theilen Aq. dest.) legte, bis sie genügend durchsichtig geworden waren (nach 1 bis 5 Minuten); hierauf Auswaschen in Aq. dest., dann in Goldchloridlösung (1:100 und 1:200; schwächere Lösungen, wie 1:500 und 1:1000, haben sich bei vorliegender Arbeit als völlig ungenügend erwiesen) während 20 Stunden, Auswaschen und nun zur Reduktion des Goldes nach 24 Stunden in verdünnte Ameisensäure an einem dunklen Orte (Lö-

Ueber den feineren Bau des Pferdehufes. 177

wIt'sche Goldmethode 1)), dann Härten in Alkohol absolutus. Oder noch vorher Färben in toto in Picrocarmin.

Wenn man Ameisensäure vor dem Einlegen der Stücke in Goldchlorid nicht anwendet, so tritt nach unserer Erfahrung eine gute Färbung der Nerven nicht ein. Die Wirkung des Reagenz erstreckt sich in diesem Falle nicht in die Tiefe. Die Färbung des Präparates ist ferner eine sehr ungleichmässige. Schlägt die Goldmethode jedoch ein, so tritt die Färbung der Nerven bei weitem schöner und prägnanter zu Tage, als dies nach Osmiumsäure je der Fall ist; die Präparate halten sich auch dem Anschicne nach recht gut und lange. Das Gelingen der Goldmethode ist leider nur zu oft illusorisch. Es hättet ihr ferner, wenn man die Löwit'sche Methode der Untersuchung einschlägt, der Nachtheil an, welcher sich für uns recht störend erwies, dass die Enden der feinen Papillen der Fleischkrone und der Fleischsohle, in denen die Endigung der nervösen Elemente stattfindet, durch die längere Einwirkung der Ameisensäure zu stark aufgeweicht werden und später für die Beobachtung verloren gehen.

Erwähnen wollen wir noch, dass das von Flemming 2) eingeschlagene Verfahren einer Mischung von Osmiumsäure, Chromsäure und Eisessig recht leistungsfähig ist.

Es ist stets von Vorteil, die anzuwendenden Lösungen, Osmiumsäure und Goldchlorid, vor dem Gebrauch frisch herzustellen, da der Erfolg alsdann ein bedeutend sicherer ist. Hämatoxylin, Bismarckbraun, wie überhaupt alle solche Farbstoffe, deren Hauptwirkung sich auf Kernfärbung erstreckt, eignen sich nicht besonders dazu, um mit Goldchlorid und Osmiumsäure behandelte Stücke zu färben.

Begonnen wurde die vorliegende Arbeit in dem Laboratorium des Herrn Professor Csókor (Wien, Thierarzneiinstitut), fortgesetzt in dem thierphysiologischen Laboratorium der École vétérinaire de l'État in Brüssel (1884/85) und schliesslich in dem thierphysiologischen Laboratorium der landwirthschaftlichen Hochschule in Berlin 1) beendet.

Histologie der Huflederhaut.

Beginnen wir die Reihe unserer histologischen Betrachtungen mit dem Kronengewebe. Wir haben hier zuerst den Fleischsaum und dann die Fleischkrone. Beide sind jedoch in ihrer feineren Bauart so nahe mit einander verwandt, dass wir sie in histologischem Sinne als ein Gewebe betrachten können.

In analoger Weise wie das Rete Malpighii der Haut Zellen produziert, die je weiter sie von der Stätte ihrer Bildung durch nachwachsende junge Zellen nach aussen gedrängt werden, mehr und mehr verhormen (die Epidermiszellen), so ist es auch bei der Cutis des Hufes der Fall, nur dass hier der Verhornungsprocess bedeutend intensiver vor sich geht und früher eintritt.

1) Den Herren Professoren Csókor, Laho und Zuntz für freundliche Unterstützung in Betreff meiner Arbeit meinen verbindlichsten Dank.
Als Epidermis müssen wir das ganze abgesonderte Horn ansehen. Da dieses in so ausserordentlicher Mächtigkeit produziert wird, so muss in gleicher Weise die Horn absondernde Schicht sehr verbreitet sein. Wie bei der Körperhaut, so haben wir auch beim Hufe als Basis für die Epidermisabsonderungen Fleischpapillen, die mit dem Rete Malpighii bedeckt sind. Entsprechend der Mächtigkeit der Hornschicht erfreut sich der Papillarkörper der Huflederhaut einer starken Entwicklung. Dadurch dass die Papillen an der Krone und an der Sohle sehr lang sind und die Fleischwand in Form vieler kleiner Falten (Fleischblättchen), die wir ebenfalls als modifizirte Papillen (s. unten) auffassen müssen, auftritt, gewinnt die hornabsondernde Fläche ungemein an Ausdehnung.

An der Hufsohle bildet ein Theil des Stratum vasculosum als Stratum periostale das Periost für die untere Fläche des Hufbeines.

Betrachten wir uns die Bildungsweise und die Art der Beschaffenheit der jungen Hornzellen näher, so sehen wir, dass die Grenze zwischen epidermoidalem Gewebe und dem der Cutis sehr scharf ausgesprochen ist. Das Rete Malpighii wird von dem Corpus papillare durch einen strukturlosen Saum, der wie eine glasbelle Membran erscheint, da er sich (in Pierocarmín) weniger färbt,

Oberhalb derselben stossen wir auf Zellen, die beträchtlich grösser sind; ihre Gestalt ist rundlich. Die Kerne sind ebenfalls gross und rund. An diese Uebergangszellen¹) schliesst sich eine mächtig entwickelte Schicht, welche aus Stachelzellen²) besteht.

Die Stachelzellen (s. unsere Figur 4, dieselbe stellt 7 isolirte Stachelzellen bei 550facher Vergrösserung dar) besitzen eine mannigfache Gestalt. Sie sind rund, länglich rund, viereckig oder polyedrisch. Im Innern derselben findet sich ein grosser, runder oder ovaler Kern, der vielfach einen doppelten Contour erkennen lässt. Im Innern der Zellkerne treten häufig Kernfiguren in Gestalt runder aus verdichtetem Plasma gebildeter Haufen auf. Die Oberfläche unserer Zellen ist mit grossen Stacheln, wie sie in unserer Fig. 4d (Grösse 1:1025) angedeutet sind, besetzt. Sie sind schärfser, länger und spitzer als die beim Menschen aufgefundenen Rißzellen

²) Vgl. Kunisky; l. c. p. 6 und p. 35.
Ueber den feineren Bau des Pferdehufes. 181
der Haut. Ueberblickt man ein gelungenes Präparat 1), wie solche nach mehrtägiger Behandlung mit Osmiumsäure (1:100) zu Tage treten, so erstaunt man über die grosse Ausdehnung dieser Stachelzellenformation und über die regelrechte Mosaik ihrer Anlage. Die Stachelzellen greifen mit ihren Fortsätzen wie zwei in einander gesteckte Bürsten innig in einander.

Während die Stachelzellen in der Nähe des Rete einen einfach contourirten Kern aufweisen, wird derselbe nach aussen bei vielen Zellen doppelt contourirt. Hie und da bemerkt man an genügend dünn Schnitten Lücken innerhalb der Stachelzellen und sieht es fast so aus, als wäre der Kern an solchen Stellen verloren gegangen. Die jugendlichen Stachelzellen erscheinen anfänglich spindelförmig gebaut; sie runden sich bald ab; auch sind ihre Fortsätze weniger entwickelt.

Die Hornzellen des Hufes zeichnen sich durch ihren Reichthum an Pigment aus. Dieses findet sich nicht in diffuser Form, sondern stets als Kugelchen von minimaler Grösse. — Hierbei wollen wir gleich einschalten, dass das zwischen den Fleischpapillen gelegene (Zwischen-) Horngewebe nicht gleichmässig beginnt,

1) Gute Bilder erzielt man ferner durch Färben der Stücke in toto in Picrocarmin, Einlegen der Schnitte für einen Augenblick in ganz schwache Pierinsäurelösung. Das Grundgewebe erscheint hiernach roth gefärbt mit dunklen Kernen, die Hornzellen gelb, ihre Kerne roth; auch treten die Stachelfortsätze gut zu Tage.
sondern dass es in Form kleiner, verschieden großer Hornpapillen, von denen man an der Sohle 3 bis 4 zählen kann, in das Cutis-­gewebe eingesenkt ist, welches zwischen ihnen in entsprechender Anzahl kleine Fleischpapillen bildet. — Die Pigmentablagerung findet zuerst am Basaltheile der Hornpapillen in der Weise statt, dass am oberen, nach aussen gerichteten Rande jener oben erwähnten Stachelzellen kleine, runde, Körnchen von Pigment auf­treten, die anfänglich nur vereinzelt, sich später um den oberen Theil des Zellkernes in großer Zahl ansammeln, bis sie schliesslich in solcher Menge angewachsen sind, dass sie den Kern vollständig verdecken und die Zelle erfüllen (s. unsere Figur 4, a bis e, Stachelzellen mit beginnender Pigmentablagerung). Indem die Stachelzellen von innen her durch stete neue Proliferation von jungen Zellen nach und nach in die Höhe geschoben werden, nehmen sie zugleich auf ihrer Wanderung nach aussen das in ihnen abgelagerte Pigment mit. In Präparaten, in denen die Stachel­zellenformation in Folge der angewandten Tinktionsmethode nicht deutlich zum Vorschein kommt, schein den Pigmentkörner am unteren Papillarrande häufig in Form von langen, zusammenhän­genden Streifen zusammengeflossen zu sein oder sie bilden höchst unregelmässig gestaltete sternförmige Figuren. Häufig nehmen jedoch auch die Cylinderzellen des Rete Anthcil an der Pigment­ablagerung und erscheinen dieselben dann bisweilen mit Pigment ganz erfüllt. Die Menge des Pigmentes hängt vor allem von der Farbe des Hufhornes ab. Dunkelgefärbte Hufe enthalten naturgemäss mehr Pigment als weisse. Kehren wir nach dieser nothwendig gewordenen Abschweifung wieder zur Besprechung unseres in Rede stehenden Gewebes zurück. Durchbrochen wird die Schicht des Zwischenhorngewebes von den Fleischpapillen, die von dem Corpus papillare gebildet werden. Die Papillen sind im Grunde genommen nichts Anderes als enorm vergrösserte Hautpapillen. Sie sind höchst unregel­mässig gestaltet. Ihre Grösse ist sehr wechselnd und richtet sich ganz nach dem Orte, dem die Schnitte entstammen. Die Papillen des Fleischsaaumes und die am Uebergange der Fleischkrone in die Fleischblättchen und der Fleischblättchen in die Fleischsohle sind die kleinsten, die Papillen in den seitlichen Strahlfurchen der Sohle die längsten u. s. w. Die Grundform der Papilen ist die eines Kegels, welcher der

An Querschnitten durch die Papillen (Tangentialschnitte durch die Krone oder Sohle) erkennt man, dass dieselben eine verschiedene Form haben. Dieselben sind entweder rund (und dies ist meistens der Fall), oder oval, bisweilen länglich (s. Figur 5, Querschnitt durch eine Kronenpapille bei 145facher Vergrösserung, Str. p. = Stratum papillare, R = Rete Malpighii, C = Stratum corneum).

Die Papillen haben übrigens nicht den einfachen Bau eines Kegels, der mit einer Hornschicht umkleidet ist, sondern die Oberfläche derselben ist mit kleinen Längsleisten (blättchenformigen Vorsprüngen) versehen, die zum Theil rings um die Papillen herumlaufen, zum Theil nur an zwei Seiten derselben auftreten. Auf Querschnitten erscheinen diese Leistchen als winzige kleine Papillen zweiter Ordnung (Secundärlamellen; s. Figur 5). Dieselben lassen sich vielfach bis zur Spitze der Papillen verfolgen (vergl. auch Figur 11).

Die kleinen Fleischpapillen des Zwischenhorngewebes, welche sich zwischen den kleinen Hornpapillen desselben befinden, haben einen ganz ähnlichen Bau wie die grossen Papillen. —

Verlassen wir jetzt die Papillen und wenden wir uns zunächst zur Besprechung der Fleischwand. Dieselbe gliedert sich in die eigentliche Fleischwand und in die Fleischblättchen. Letztere erscheinen wie die Blätter eines Buches, deren Rücken in die Fleischwand eingelassen ist. Obwohl die einzelnen Fleischblättchen sehr dicht gedrängt stehen, so lassen sie dennoch grosse Zweischenräume zwischen sich, die am lebenden Pferde von den
Hornblättchen vollständig ausgefüllt werden. Die Fleischblättchen bilden den wichtigsten Theil des Hufes. Ihr histologischer Bau ist jedoch keineswegs so einfach, wie derselbe auf den ersten Blick erscheint.

Sehen wir uns, um ein recht klares Bild zu erhalten, ein isolirtes und tingirtes Fleischblättchen erst bei schwacher Vergrösserung an, so bemerken wir, dass die Seitenflächen desselben nicht die einfache, glatte Form eines Blattes besitzen, sondern dass die Oberfläche derselben mit kleinen, unregelmässigen, der Länge nach verlaufenden Lamellen bedeckt ist. Es sind dies nichts anderes als seitliche Auswüchte der (primären) Fleischblättchen, die zum Unterschiede von diesen mit dem Namen der secundären Fleischblättchen bezeichnet werden.

Die Form der Fleischblättchen wird am besten aus solchen Querschnitten durch die Fleischwand ersichtlich, in welchen sich das abgesonderte Horn (die Hornblättchen) noch im Zusammenhang mit den Fleischblättchen befindet. Die besten und übersichtlichsten Bilder hierfür liefern pathologische Prozesse und zwar Verlohungen der Fleischblättchen mit den Hornblättchen, wie sich solche als Residuen von früher bestandenen Entzündungsprozessen vielfach finden. Das mikroskopische Bild wird bei solchen mehr oder weniger atrophischen Zuständen nicht durch zu reichliche Zellbildung, wie sie unter normalen Verhältnissen vor sich geht, getrübt. In Figur 1 haben wir einen derartigen Vorgang wiedergegeben. Dieselbe stellt einen Querschnitt dar durch die noch im Zusammenhange mit den Hornblättchen befindlichen Fleischblättchen. Sie ist nach einem mikroskopischen Präparat vom Photographen Carl Günther (Berlin, Behrensstrasse 24) angefertigt.

In der Mitte unseres Bildes befindet sich ein Fleischblättchen, ihm zur Seite je ein Hornblättchen, deren Central-
ieber den feineren Bau des Pferdehufes.

185

An der Basis der Fleischblättchen ist der centrale Theil der primären Hornblättchen noch nicht verhornet (Figur 1). Die vom Rete abgesonderten polygonalen Zellen liegen anfänglich in der Richtung des Querdurchmessers der Blättchen; sie machen jedoch bald, indem sie von den nachwachsenden jungen Zellen nach aussen fortgeschoben werden, eine Wendung und verlaufen nun in der Richtung des Längendurchmessers; zugleich ist ihre Gestalt dem entsprechend länger und schmäler geworden. Je weiter sie nach aussen gedrängt werden, um so mehr büssen sie durch den Druck der nachwachsenden Zellen ihre ursprüngliche Form ein und verhornen allmählich, bis sie schliesslich den centralen Hornstrang der Hornblättchen darstellen.

Die Hornblättchen, die demnach an ihrem basalen Ende ein völlig zelliges Gefüge haben, verjüngen sich nach innen mehr und mehr und laufen schliesslich in einer dünnen Spitze, nachdem sie sich noch ein grosses Stück in das eigentliche Cutisgewebe hinabgesenkt haben, aus. Ein gleiches Schicksal erleiden die secon-
dären Hornblättchen. Sie nehmen nach innen (in unserer Figur 1 nach abwärts) gradativ an Grösse ab und hören bereits vor dem Ende der primären Hornblättchen auf. Letztere nehmen übrigens ihren Ursprung in der Fleischwand durchaus nicht immer in gleicher Höhe. Sie beginnen einmal höher, das andere Mal tiefer (Figur 1). Ausserdem treten vielfach Theilungen (Gabelungen) der Hornblättchen und zwar in verschiedener Höhe derselben auf (vergl. Figur 7 bei x, welche einen Querschnitt durch die Wand eines injicirten Fohlenhufes halbschematisch darstellt).

Die Form der secundären Hornblättchen, auf Querschnitten im Allgemeinen an die Figur eines Eichenblattes erinnernd, variiert sehr bedeutend je nach der Stelle, welcher wir die Schnitte entnommen haben, je nach der Grösse des betreffenden Pferdes und sie ist ausserdem noch bei jedem Hufe eine von einander etwas abweichende. Im grossen Ganzen steht jedoch fest, dass die secundären Hornblättchen am unteren Theile der primären Hornblättchen eine rundliche Gestalt besitzen; nach aufwärts werden sie mehr in die Länge gezogen und zugleich stehen sie etwas nach innen gerichtet (vergl. Fig. 1).

Die Grösse der primären Fleischblättchen ist gleichfalls sehr wechselnd; sie richtet sich nach der Gegend, der dieselben entstammen, ob von der Zehen- oder Trachtenwand, ob vom Eckstrebentheile der Sohle oder von der Uebergangsstelle in die Krone und in die Sohle.

1) Kunsien, l. c. p. 8, bezeichnet die den freien Rändern der Fleischblättchen aufsitzenden Epithelzellen mit dem Namen Kappenzellen. — Da sie sich von den übrigen Zellen nicht unterscheiden, so haben wir keine Veranlassung gehabt, diesen Namen zu acceptiren.
Die Bildungszellen des Rete Malpighii gehören im Grunde genommen zu den Weichtheilen (Fleischblättchen), nicht zu dem Horngewebe, da sie allein es sind, von denen aus die Bildung der Hornzellen erfolgt.

Der Unterschied zwischen Hornblättchen und Fleischblättchen besteht streng genommen nicht, da es eine Trennung zwischen ihnen in Wirklichkeit nicht gibt und eine solche zwischen sekundären Hornblättchen und sekundären Fleischblättchen erst recht nicht existirt, da die Vereinigung dieser Gebilde eine viel zu innige ist — sie bilden ein abgeschlossenes Ganze — und der Übergang zwischen ihnen ganz allmählich stattfindet.

Was wir am todten Hufe als Horn- und Fleischblättchen zu unterscheiden gewohnt sind, ist nur ein Kunstprodukt und stellt aus dem Zusammenhange herausgerissene Zellenglomerulate dar. Wir wollen jedoch die Namen, da sie sich einmal im Sprachgebrauche zu sehr eingebürgert haben, beibehalten.

Will man eine willkürliche Grenze zwischen Secundärhornblättchen und Secundärfleischblättchen annehmen, so muss man dieselbe oberhalb der Cylinderzellen des Rete suchen.

Da die Retezellen die Bildungsstätte für die Hornzellen abgeben, so ist es auch erklärlich, dass, wenn man bei Lebzeiten

des Pferdes einen Theil des Wandhornes\(^1\) entfernt, sich die entblößte Fläche binnen Kurzem wieder mit neuem Horn eindeckt, da eben die Retezellen an den Fleischblättchen haften bleiben.

Derjenige Theil unseres Gewebes also, der sich zwischen zwei Hornblättchen (Figur 2) befindet, stellt das eigentliche Fleischblättchen vor. Dieses besteht aus dem Corpus papillare, einem derben Bindegewebe mit zahlreichen eingestreuten Kernen, in welchem die Blutgefäße, die den Retezellen das zur Bildung neuer Zellen so nothwendige Nährmaterial zuzuführen haben, eingebettet liegen. In der Medianebene der Blättchen finden sich reichlich elastische Fasern.

Das Stratum vasculosum setzt sich nach innen als sogenanntes Stratum periosstale oder je nachdem als parachondrales Gewebe fort und bildet als solches das Periost des Hufbeines resp. das Perichondrium des Hufbeinknorpels. Der Übergang des Stratum vasculosum in den Knorpel geht ganz allmählich von statten. Das Gewebe, welches anfänglich ein maschiges Gefüge zeigt, indem kleine, runde Lücken vorhanden sind, verdichtet sich darauf stellenweise. An diesen verdichteten Stellen werden Knorpelzellen abgelagert, welche anfänglich in Gestalt kleiner Inseln auftreten, sehr bald jedoch confluiren und eine zusammenhängende Knorpelmasse darstellen, deren Grundsubstanz eine hyaline Beschaffenheit auf-

\(^1\) Eine Operation, die in der tierärztlichen Praxis bei entzündlichen Vorgängen im Hufe vielfach vorgenommen wird.
wesist. An Querschnitten durch den Huf eines Foetus sieht man sehr instructiv, dass der später hyaline Hufknorpel aus dem Netzknorpel hervorgeht (Doppelfärben in Bismarckbraun und Hämatoxylin).

Die Gefässwandung bekommt je nach den in Anwendung gezogenen Reagentien ein anderes Aussehen. Nach Färben in toto in Picocarmin mit darauf folgendem Tingiren in Hämatoxylin

1) Hierbei wollen wir darauf aufmerksam machen, dass Medianschnitte für das Studium der Blättchen nicht gerade günstig sind. Da es selten gelingt, die Schnitte völlig parallel mit dem Verlaufe der Blättchen zu erhalten, so treten die einzelnen Gewebsbestandtheile derselben (primäre Fleischblättchen, secundäre Fleischblättchen, ein Stück der primären Hornblättchen mit secundären Hornblättchen) in buntem Wechsel auf, wodurch Bilder entstehen, die anfänglich verwirren.

2) Für Nervenfärbung war diese Methode resultatlos. Möglich, dass die Entfärbungsflüssigkeit zu concentrirt war und dass man mit recht dünnen Lösungen von Ferricyankalium weiter kommt.

Nach der Behandlung mit Osminumsäure (auch nach Goldehlorid, hier jedoch weniger deutlich; ferner nach der Weigert'schen Hämatoxylinfärbung) erscheint die Gefässwand der Arterien wie eine gefensterte Membran, oder als ob sie aus unregelmässigen, netzförmig angeordneten Zellen, mit doppeltem Contour und zum Theil grossen runden Kernen bestünde. Das Nähere über diese maschenförmige Anordnung1) ergiebt sich am besten aus unserer Figur 6 (Grösse 1:550).

Die Venen zeichnen sich durch ihr weites Lumen und durch die verhältnissmässig geringe Wandstärke aus. Um dieselben befindet sich eine breite Schicht längsverlaufender, sich kreuzender elastischer Fasern. Das Stratum vasculosum ist ferner reich an Lymphgefässen, namentlich am Sohlenrande.

Die Fleischblättchen sind, wie bereits angedeutet, vielfach der Sitz pathologischer Processe, die sich mit Vorliebe in den Zellen des Rete Malpighii abspielen. Wir können hierbei hauptsächlich zwei Extreme unterscheiden. Einmal Hyperplasien, die durch akute Entzündungen (Dermatitis superficialis, Möllers2), wie

1) Diese netzförmigen Maschen der Arterien sind nach entzündlichen Procesen mit ausgetretenen Blutkörperchen vollgepfropft.

Das Gegentheil hiervon bilden atrophische¹ Zustände, die man an Hüften alter Pferde beobachten kann. Sie sind Reste früher bestandener Entzündungen. Hier sind die Retezellen auf ein Minimum beschränkt. Fleischblättchen und Hornblättchen sind so innig mit einander verlötet, dass eine mechanische Trennung derselben nicht mehr möglich ist. Letztere Formen sind es, die die übersichtlichsten Bilder von dem innigen Zusammenhange der Fleischblättchen mit den Hornblättchen liefern (s. Figur 1 und 2; Querschnitt durch die Zehenwand).

Nach aufwärts sowohl wie nach abwärts verkürzen sich die Fleischblättchen und stellen schliesslich schmale, niedrige Leisten dar, an denen man mit bewaffnetem Auge kleine, papillöse Her- vorragungen bemerken kann, die anfänglich nur hügelartig sich über das Niveau der Fleischwand erheben, nach und nach aber die Form von immer grösser werdenden Papillen annehmen. Die Fleischblättchen gehen mithin direkt in die Fleischpapillen über.

¹) Hierbei wollen wir noch bemerken, dass eine senile Atrophie der Retezellen nicht zu bemerken ist.
Dieser Vorgang findet sowohl beim Uebergange in die Krone als auch in die Sohle statt. Zu erwähnen wäre noch, dass sich in der Mitte der Zehe und zwar am unteren Rande derselben ein kleiner Einschnitt bemerkbar macht, an welchem die Fleischblättchen fehlen. An ihrer Stelle finden sich hier kleine Papillen.

Trotzdem die Fleischblättchen nach abwärts immer niedriger werden, so vermindert sich die Dicke der Fleischwand keineswegs, sondern das Gewebe des Stratum vasculosum steigt dem Abnehmen der Fleischblättchen entsprechend in die Höhe und wölbt sich sogar am Sohlenrande beim Uebergang in die Fleischsohle bogenförmig nach aussen, so dass die Huflederhaut hier, wo Wand und Sohle zusammenstossen, ihre grösste Mächtigkeit erreicht. Diese Convexität ist mit kleinen Papillen besetzt. Zu ihrer Aufnahme findet sich im abgetrennten Hufhorne eine deutlich markirte Vertiefung. An Stelle der Fleischblättchen produirt also die Huflederhaut wieder Papillen.

Querschnitte durch die Sohle zeigen uns als Grundlage des Gewebes ein fibrilläres Bindegewebe von ansehnlicher Ausdehnung, das sich durch Zerzupfen in wielige, fadenförmige Bindegewebsfibrillen zerlegen lässt. Durch Färben in toto in Pierocarmin und nachher in Bismareckbraun kommen die Bindegewebszellen sehr hübsch zum Vorschein. Die Gestalt derselben ist sehr wechselnd. Sie sind rund, oval, länglich, elliptisch, spindelförmig u. s. w., meistens mit 2 Fortsätzen versehen; bisweilen finden sich jedoch
Ueber den feineren Bau des Pferdehufes.

193

nicht mehr (bis 5). Das Bindegewebe des Stratum vasculosum bildet Lücken und Maschen, die zum Theil von den auch hier un-
gemein zahlreich vorhandenen Blutgefässen eingenommen werden.

Am Sohlenrande haben die Bildungszellen des Rete Malpighii keinen so ausgesprochen keulen- resp. spindelförmigen Charakter
wie z. B. in der Mitte und in den hinteren Partien der Sohle,
sondern sie sind mehr oval, palissadenförmig angeordnet; auch
sehen sie nicht so stark gedrängt. Ihre ovalen Kerne sind etwas
vom Rande entfernt.

Die Stachelzellen des Sohlenhornes verhornen ziemlich schnell.
Der Verhornungsprozess geht jedoch nicht gleichmassig von statten,
sondern tritt an einzelnen Stellen schärfer hervor. Da ausserdern
auch die Richtung der Hornzellen wechselt, in so fern als die
Längsachse einiger Zellgruppen nach aussen, anderer wieder nach
den Seiten gerichtet ist, so erhält das Horngewebe namentlich an
etwas dickeren Schnitten ein eigenartiges, streifiges Gefüge.

Fleischblättchen und Papillen sind im Grunde genommen
vollkommen analoge Gebilde, die in histologischer Beziehung voll-
ständig mit einander übereinstimmen. Sie bestehen aus dem Binde-
gewebsblutgefassapparate, welcher mit einer Schicht von palissaden-
förmig angeordneten Retezellen umhüllt ist. Diese haben die Auf-
gabe, die zum Schutze der sehr empfindlichen und nervenreichen
Weichteile notwendigen Stachelzellen, aus denen die gesamte
Hornmasse sich aufbaut, zu liefern. Wir sehen also, dass die dem
Anscheine nach höchst complicirten Gebilde, wie Papillen, Horn-
blättchen und Fleischblättchen, sich aus höchst einfachen Gewebs-
elementen zusammensetzen. Die Papillen sind als modifizirte
Fleischblättchen, die Fleischblättchen wieder als modifizierte Pa-
pillen anzusehen. Die Papillen stellen wieder nichts Anderes dar
al als die enorm vergrösserten Analoga der Papillen der allgemeinen
Körperdecke. Zu bemerken ist die ausserordentliche Ausnutzung
des gegebenen Raumes. Indem sowohl Papillen als Blättchen mit
vielen kleinen Längslamellen versehen sind, erhält die hornabson-
dernde Fläche, welche auf den denkbar kleinsten Raum beschränkt
hat, in Wirklichkeit eine kolossale Ausdehnung. Nur hierdurch ist
die Möglichkeit geboten, eine solche Unsumme von Hornzellen,
wie sie zur Herstellung eines Hornschuhes notwendig ist, liefern
zu können.
Histologie der Nerven.

Anschliessend an die Untersuchung der Huflederhaut wollen wir uns, ehe wir zur Betrachtung der von der Huflederhaut gebildeten Hornkapsel übergehen, mit dem Bau der im Hufinnern vorkommenden Nerven vertraut machen. Bevor wir jedoch hiermit beginnen, wollen wir uns an die groben anatomischen Verhältnisse der Hufnerven erinnern.

Die uns interessirenden beiden Nerven stammen vom Median-­nerv\(^1\)) (aus dem Plexus brachialis) und laufen jederseits am Rande der Beugesehne an der Seite des Schienbeines als innerer und äusserer Schienbeinnerv nach abwärts. Der innere Schienbeinnerv sendet in der Mitte des Schienbeines einen starken Verbindungssast zum äusseren. Jeder Nerv spaltet sich am Fesselgelenk in einen vorderen und einen hinteren Ast.

Der vordere Fesselnerv geht unter der Haut schief nach vorn und abwärts und löst sich in mehrere Zweige auf, die sich in der Haut des Fessels, in dem Fleischsaume, in der Fleischkrone und in der Fleischwand verbreiten.

Der zweite, innere Ast tritt zusammen mit der inneren Hufbeinarterie, deren Lauf er folgt, durch das Sohlenloch in das Innere des Hufbeines. Er theilt sich hierauf in zahlreiche Aeste, welche durch die kleinen Kanäle, die an der äusseren Wandfläche des Hufbeines dicht oberhalb des unteren Randes desselben ausmünden

\(^1\) Wir erlauben uns daran zu erinnern, dass die Untersuchung nur an Vorderfüssen vorgenommen wurde.

Bei näherer Untersuchung finden wir, dass sich ein Theil der Nervenfasern, welche vom vorderen Fesselnerven stammen, im Kronengewebe verästelt und dort bereits seine Endigung findet, während die übrigen im Stratum vasculosum der Fleischwand nach abwärts bis zum Sohlenrande ziehen.

nung hervorgerufenen Formveränderung behalten die Nerven ihre Dicke überall bei.

Beide Nervenformen kommen in grossen Nervenbündeln, d. h. solchen, die aus einer grossen Anzahl von Nervenfasern bestehen, stets zusammen vor, jedoch überwiegen die groben an Zahl. Der Lauf der Nervenbündel ist meistens geradlinig. Dies ist jedoch durchaus nicht Regel, da man auch vielfach einen geschlängelten Verlauf derselben beobachten kann. Kleine Nervenbündel, die nur aus 2 oder 3 Fasern bestehen, laufen meistens geschlängelt, während wieder isolirte Fasern mit Vorliebe geradlinig ziehen.

Grosse Nervenbündel sind mit einem entsprechend dicken, kernhaltigen Perineurium umgeben. Dasselbe ist sehr breit und besteht aus mehreren Schichten. Von dieser bindegewebigen Hülle gehen derbe Stränge in das Innere zwischen die Fasern des Nervenbündels, welches durch diese Septa in einzelne, kleinere Bündel zerlegt werden, wie man an Querschnitten deutlich bemerken kann.

Diese bindegewebige Umhüllung bildet zeitweilig fürmliche Einschnürungen, die rings um das Nervenbündel herumgehen. Hierdurch werden die einzelnen Fasern desselben fürmlich zusammengedrängt, in ihrem geraden Verlaufe aufgehalten und gezwungen, Biegungen zu machen. Treten diese Einschnürungen auf, so finden sich stets mehrere solcher u. z. in gleichmässigen, nicht allzugrossen Abständen hinter einander.

Laufen zwei Nervenbündel mit einander parallel, oder stossen sie auf ihrem Wege an einander, so tauschen sie Fasern aus, die sich dem benachbarten Nervenstamme anlehnen und der Richtung desselben folgen. Man findet solche einfache und doppelseitige Anastomosen.

Innerhalb des Nervenbündels verändern die Nervenfasern vielfach ihren Platz, während sie im Allgemeinen parallel mit einander verlaufen. Gabelt sich ein Nervenbündel, so beobachtet man häufig, dass z. B. eine an der äussersten rechten Seite gelegene Faser sich nach links wendet, um sich den Nervenfasern der linken Gabel anzulegen und umgekehrt.

1) Es wurden im Ganzen 12 Pferdefüsse untersucht.
2) Nervenschlingen sind bei der peripheren Ausstrahlung der Nerven bereits vor langer Zeit aufgefunden worden. Sie galten damals für Endigungen.
Papille hingehn, während die andere einen Bogen schlägt, ihren Lauf wieder nach abwärts nimmt, und die Papille verlässt.

In die Papillen des Sohlenrandes tritt der Nerv meistens in Form zweier Bündel, die sich häufig an der Eintrittsstelle in die Papille kreuzen und Fasern mit einander austauschen, wobei jedoch ein Theil ihrer Fäden nicht mit zur Papille geht, sondern sich im Stratum vasculosum verbreitet. Die eintretenden Bündel bestehen aus mehreren Fasern (bis 6). In der Regel enthält das eine mehr Fasern als das andere. Beide Bündel steigen dann getrennt von einander in der Papille in die Höhe (vergl. Figur 10, dieselbe ist nach einer Photographie. Sie stellt eine Papille an der Uebgangsstelle der Fleischblättchen in die Papillen bei schwacher Vergrösserung dar. Die schwarzen Fäden im Innern sind die Nerven. — Nach einem mikroskopischen Präparate [Osminumsäure]). Das grössere begleitet die Papillararterie und Vene, während das kleinere mehr seinen Weg am Rande der Papille nimmt. Die Anzahl der nervösen Elemente, die in eine Papille eintreten, sowie ihr Verlauf wechselt ungemein, so dass sich hierfür durchaus keine bestimmte Regel aufstellen lässt. Es kommt auch ebenso häufig vor, dass die Nervenfasern einzeln oder nur zu zweien geeint die Papille betreten.

Bis kurz vor ihrer Endigung lassen sich die Papillarnerven verhältnissmässig leicht verfolgen. Das Auffinden des Terminaltheiles ist jedoch mit grossen Schwierigkeiten verknüpft, die zum Theil durch die oft umgebogene oder verdrehte Lage der Papillen
lieber den feineren Bau des Pferdehufes. 199
bedingt werden, dann ferner dadurch, dass die Nervenfärbemittel, Goldchlorid und Osmiumsäure 1), die jungen Hornzellen, welche den oberen Theil der Papillen einhüllen, zu stark tingiren und hierdurch die Endigungen der Nerven verdecken. Ein weiterer Umstand, der hindernd auf die Klarlegung der Verhältnisse einwirkt, beruht darin, dass die der Papillenspitze aufsitzenden Zellen meistens mit Pigment zu stark angefüllt sind. Schliesslich sei noch erwähnt, dass die Spitze der Papille in Folge der angewandten Behandlungsweise (Goldchlorid und Reduktion in Ameisen säure) vielfach verloren geht.

Die Breite der in die Papille eintretenden Nervenfäden beträgt 1,6 bis 3 (im Mittel 2,4) M. Es sind also die feineren Nervenfasern, die hier zur Endigung gelangen.

Der Lauf der Nerven im oberen Theile der Papille ist für gewöhnlich geschlängelt; einzelne Nervenfasern verlaufen dagegen wieder geradlinig. Die Fäden der Nervenbündel gehen nach der Peripherie hin auseinander und enden schliesslich dicht unter den Zellen des Rete Malpighii, indem sie vorher etwas anschwellen. Die definitive Endigung der Nerven ersehen wir am besten aus Figur 11 2), welche die Umrisse einer Papille des Sohlenrandes bei 235 facher Vergrösserung wiedergiebt; N I ist der Nerv, welcher zwischen 2 papillenförmig in das Gewebe der Papille eingelassenen Schichten von Retezellen, die sich häufig an der Spitze der Papille als kleine Sekundärpapillen finden, bis zum Ende der Papille emporsteigt und hier kolbenförmig anschwillt. Der Inhalt dieser Anschwellung bestand (nach Osmiumsäure) aus feinkörnigem Plasma. Sie endet in einer Spitze, von welcher ein kleiner faden-

2) Nach Serienschnitten. Die Schnitte neben diesem, welche gleichfalls noch Nerven der Papille enthalten, jedoch keine Endigung, befinden sich noch in dem betreffenden Präparat, dem die Photographie entnommen ist.

Da wir solche kolbenförmige Anschwellungen am Ende der in die Papille eintretenden Nerven öfters zu beobachtet Gelegenheit hatten, so glauben wir zu der Annahme berechtigt zu sein, dass wir es hier mit der wirklichen Endigung der Nerven zu thun haben. Es scheint demnach eine zweifache Form der Endigung stattzufinden, einmal die kolbenförmige Anschwellung und dann ein fadenförmiges Eindringen in die Retezellen, wie dies ja auch schon von anderen Nerven bekannt ist, ähnlich wie die von Lang e rs h a n s 1) beobachteten Endfäden der Nerven in der menschlichen Haut, welche ja auch zwischen die Elemente des Rete Malpighi vordringen.

Anschliessend hieran wollen wir noch bemerken, dass es uns einmal vorgekommen ist, als ob sich der Terminalfaden vor seinem Ende gabelte. Wir erwähnen dies nur, weil ein solcher Vorgang bei anderen Nerven bereits mehrfach beobachtet worden ist. In dem betreffenden Präparate gliedert sich ein Nervenfaden scheinbar kurz vor seinem Ende in 2 Theile, die noch ein Stück parallel mit einander nach aufwärts verlaufen. Wir sind sehr geneigt, eine Theilung des Nerven vor seiner Endigung in Analogie mit anderen Terminalfäden anzunehmen. Jedoch konnten wir, trotzdem die Untersuchung auf das Peinlichste vorgenommen und alle Arten der schiefen Beleuchtung (mit und ohne Abbe) angewendet wurden, doch nicht zu der endgültigen Ueberzeugung gelangen, dass hier eine wirkliche Theilung, die wir sonst nirgends zu Gesicht bekamen, vorlag. Die Ursache hierfür lag darin, dass sich ein kleines Stück der Nervenfaser gerade an der fraglichen Theilungsstelle nicht gefärbt (nach Osmiumsäure) hatte. Ein daneben oder darunter gelegener zweiter Nerv konnte jedoch weder in dem betref-

1) Virchow’s Archiv, Bd. 44, p. 325.
Ueber den feineren Bau des Pferdehufes.

201

fenden Schnitte noch in den daneben liegenden wahrgenommen werden.

Während das Auffinden der Nervenendigungen in den Papillen schon mit vieler Mühe verknüpft war, gestaltete sich die Sachlage bei den Fleischblättchen ungemein schwierig und hat Verfasser eine definitive Endigung der Nerven in diesem Gebilde nicht aufzufinden vermocht, trotzdem dass zahlreiche Serienschnitte durch die Blättchen nach allen Richtungen derselben geführt und die verschiedensten Methoden, die Nerven zu färben versucht wurden. Die Resultate, die wir hierdurch gewannen, ergaben nur, dass die Nerven in Form grösserer oder kleinerer Bündel im Stratum vasculosum der Fleischwand u. z. stets in einiger Entfernung vom Ursprunge der Fleischblättchen von oben nach abwärts verliefen.

Ganz anders gestalten sich jedoch die Verhältnisse am Sohlenrande. Hier finden wir in den niedrig gewordenen Fleischblättchen, kurz bevor sie in die Papillen übergehen, Nerven in grosser Zahl. Dieselben treten hier meistens als einzelne Fäden auf, oder sie sind zu zweiwen geeint. Innerhalb der Blättchen verlaufen sie, vielfach geschlängelt, nach allen Richtungen hin, meistens jedoch dem Blattrande zu, woselbst sie dicht unter den Retezellen fadenförmig enden. In der Medianebene der Blättchen begegnet man jedoch auch grösseren Bündeln.

Im Verlaufe der Nervenfasern treten bisweilen eigenartige, kugelige Anschwellungen auf, die bei näherer Betrachtung aussehen, als hätten wir es hier mit in der Substanz des Nervenfadens eingelassenen Kernen zu thun. Diese kernförmigen Figuren sind meistens spindelförmig gestaltet. Bei starker Vergrösserung sieht man, dass sie gegen den Nervenfaden, dessen Schwann'sche Scheide sie gleichmässig umgiebt, scharf abgegrenzt sind (s. Figur 12, Nervenfaser mit spindelförmiger Anschwellung in der Mitte;

1) S. Leisering und Hartmann, Der Fuss des Pferdes in Rück-sicht auf Bau, Verrichtungen und Hufbeschlag; V. und VI. Auflage. Dresden 1882 und 1886, p. 54.
nach Osmiumsäure; Grösse 1 : 1020). In der Mitte dieser spindel-
formig gestalteten Zelle (Figur 12) befindet sich ein grosser ovaler
Kern mit einer dunklen Kernfigur im Innern. Die Nervenfaser,
welcher unsere Abbildung entnommen ist, lief in der Medianebene
eines Fleischblattes in der Nähe des Sohlenrandes fast parallel mit
dem Blattrande von oben nach unten. In demselben Stück fanden
wir ungefähr 20 Schnitte von ersterer entfernt eine gleiche An-
schwellung bei einem anderen Nervenfaden. Die Breite dieser be-
trug 4,8 M bei einer Länge von 15 M. Bei einer dritten war die
Breite des Nervenfadens 4,8 M, also eine grobe Faser, während die
Breite der Anschwellung 8 M, also fast das Doppelte, betrug, bei
einer gleichen Länge von 15 M wie die vorige.

In den Figuren 13 bis 16 haben wir noch einige solcher Ge-
bilde wiedergegeben. Dieselben gleichen sich so ziemlich. Figur
16 stammt von zwei feinen Nervenfasern. In Figur 13 hat sich
der Nerv etwas gedreht; man bemerkt hier, dass sich der Inhalt
der Faser seitlich etwas über die Anschwellung hinwegzieht. In
Figur 14 sehen wir wieder, dass dieses spindelförmige Gebilde
sich an der einen Seite des Nervenfadens, welcher an dieser Stelle
aufgetrieben ist, befindet. Gegen das Innere des Nerven ist es
durch einen deutlichen Contour abgegrenzt, welcher jedoch nach
aufwärts nicht völlig abgeschlossen ist, sondern eine kleine Öff-
nung zeigt (bei x). Etwas Ähnliches findet sich in Figur 15, auch
hier ist das in Rede stehende Gebilde mehr seitlich gelagert; die
Nervenfaser ist doppelt conturiert.

Diese Anschwellungen im Verlaufe der Nerven erinnern un-
willkürlich an bipolare Ganglienzellen. Haben wir es hier mit
solchen zu thun, oder sind es nur Nervenkerne 1)? Die Beantwor-
tung dieser Frage wird erst dann möglich sein, wenn weitere, ein-
gehendere Untersuchungen über diesen schwierigen Gegenstand
angestellt sein werden.

Außerdem kommen noch ganz kleine, kernartige Gebilde im
Verlaufe der Nerven vor. Dieselben sehen aus wie kleine rund-
liche oder längliche Massen von verdichtetem Plasma. Man findet
dieselben vielfach im Innern der Nervenfasern sowie fast immer

1) Wie uns der Herr Professor Ellenberger in Dresden, mit dem
wir in Betreff dieser Angelegenheit conferirten, mittheilte, finden sich solche
Anschwellungen häufig im Verlaufe der Nerven.
überhalb der eben erwähnten spindelförmigen Anschwellungen. Sie heben sich von dem übrigen Inhalte der Nervenfaser durch ihre dunkle Farbe ab. In Figur 12 ist dieser Kern rundlich, in Figur 14 keilförmig gestaltet (vgl. auch Fig. 9).

Da andere Arbeiten unsere Zeit völlig in Anspruch nahmen, so haben wir leider diesen interessanten Gegenstand nicht weiter verfolgen können.

Anschliessend hieran wollen wir noch kurz erwähnen, dass man den Verlauf der Nerven um die Talgdrüsen, welche in der ganzen Ausdehnung der Krone, soweit dieselbe mit Haaren besetzt ist, und namentlich in der Ballengegend in grosser Menge vor-

Histologie der Hornkapsel.

Es erübrigt uns noch, um ein abgerundetes Ganze zu geben, einige Worte in Betreff des feineren Baues des Huthornes hinzuzufügen. Wir haben eingangs bei Besprechung der groben Anatomie der Hufladerhaut absichtlich die Horntheile vernachlässigt, um die Arbeit nicht ungebührlich in die Länge zu ziehen. Wir wollen das Versäumte jetzt nachholen und uns den Bau des Huthornes näher ansehen, auf die Details jedoch nur so weit eingehen, als sie in den Rahmen unserer gestellten Aufgabe passen.

Die einzelnen Theile der Hornkapsel des Pferdes führen die-

selben Namen, die wir bereits bei der Huflederhaut kennen gelernt haben.

Wir unterscheiden die Hornwand, die Hornsohle und den Hornstrahl.

Die Hornwand besitzt eine äussere glatte Fläche, die mit einer dünnen, glänzenden Hornschicht, der Glasur- oder Deckschicht, überzogen ist; und eine innere, welche mit zahlreichen, von oben nach unten verlaufenden Falten, den Hornblättchen, versehen ist. Der obere Rand der Wand heisst Krouenrand, der untere Tragrand. Er bildet denjenigen Theil der Wand, welcher beim Auftreten des Pferdes den Boden berührt. Er ist so breit, als die Hornwand dick ist. Da, wo der Tragrand in die Sohle übergeht, befindet sich eine Hornschicht, die sich durch ihre hellere Farbe von dem übrigen Horn deutlich abhebt, die sogenannte weisse Linie.

Am oberen Rande der Hornwand findet sich ein weicher, horniger Streifen, das Saumband, der, an der Zehe schmal beginnend, sich nach rückwärts verbreitet und die Ballen als eine dünne Schicht überzieht, um schliesslich im Hornstrahl zu enden. Die

Die Kronenrinne ist der Fleischkrone entsprechend ausgehöhlt. An der Zehe ist sie am breitesten und am stärksten ausgebuchtet; nach rückwärts verschmälert sie sich, schlägt sich in der Ballengegend in einem Winkel auf die Hornsohle um und verliert sich allmählich im äusseren Rande der seitlichen Strahlfurchen. Wie das Saumband, so enthält auch die Kronenrinne in ihrem ganzen Umfange zahlreiche, punktförmige Vertiefungen, die zur Aufnahme der beim Ausschuhn gewaltsam aus ihnen herausgerissen Fleischpapillen der Fleischkrone dienen.

Die 2. Schicht ist die Röhrchenblättchenschicht 1), welche nach innen an die Weichtheile grenzt. Dieselbe gliedert sich in zwei Theile, in den Uebergangstheil, wie wir ihn bezeichnen möchten, und in den eigentlichen Blättchentheil.

Der Uebergangstheil ist an der Zehe von nur geringer Mächtigkeit; er nimmt aber, je weiter man nach rückwärts kommt, um so mehr an Ausdehnung zu. Dieser Theil wird von den Forschern stets zu der Hornröhrchenschicht gerechnet. Wir möchten ihn je-

1) Das Grössenverhältniss der einzelnen Schichten der Hornwand ist beiläufig folgendes: Beträgt die Dicke der Hornwand z. B. an der Zehe 17 mm, so entfallen hiervon 9 mm auf die Röhrenschicht (+ Saumform, diese Schicht ist jedoch so gering, dass sie nicht in Betracht kommt) und 8 mm auf die Röhrchenblättchenschicht.
lieber
den
feineren
Bau
der
Hufse.
doch, da er viele Abweichungen erkennen lässt, von dieser trennen
und der Blättchenschicht einverleiben. Die Gründe, welche
uns hierzu bewogen, sind weiter unten näher auseinander gesetzt.
Der Übergangsteil ist an der Kronenrinne gegen die erste
Hornschicht scharf abgegrenzt.

Der eigentliche Hornblättchenteil besteht in analoger Weise
wie die Blättchen der Fleischwand aus feinen, dicht nebenein-
ander von oben nach abwärts gerichteten Lamellen, den Horn-
blättchen, die bei Lebzeiten des Pferdes in innigstem Zusammen-
hänge mit den Fleischblättchen stehen. Die Hornblättchen, aus
einer weichen elastischen Substanz gebildet, sind an der Zehe am
breitesten und nehmen nach rückwärts an Länge und Breite gra-
datim ab. Sie beginnen an der Kronenrinne mit einer scharfen
Kante, erreichen ungefähr einen cm von derselben entfernt ihre
grösste Breite, behalten diese eine kurze Zeit bei, verschmälern
sich in ihrem Verlaufe nach abwärts, nehmen jedoch dafür ein
wenig an Dicke zu und sinken schliesslich bis auf das Niveau der
Hornwand herab.

Die Hornblättchen sind, fasst man die Hornkapsel als einen
Kreis auf, radiär gestellt. In der Mitte der Zehenwand verlaufen
die oberen, zur Kronenrinne ansteigenden Enden der Blättchen ge-
rade, sie setzen sich senkrecht in den Übergangsteil fort. An
der Kronenrinne ist dieser Vorgang deutlich wahrzunehmen. Die
auslaufenden Blättchenenden erscheinen hier als kleine kanten-
förmige Hervorragungen, die sich namentlich mit der Lupe bis zur
Grenze des Übergangsteiles verfolgen lassen. Sehr bald jedoch
wird ihre Einpflanzung in den Übergangsteil schräg, indem sie
eine Biegung nach aussen machen, die von der Zehe nach den
Trachten gerichtet ist und die, anfänglich gering, jedoch um so
stärker auftritt, je mehr man sich von der Zehe entfernt und den
Ballen nähert 1). Zugleich werden die Blättchenenden im Übergan-
gangsteile immer länger. Hierin ist auch der Grund zu suchen,
wesshalb der Übergangsteil nach den Trachten an Ausdehnung
zunimmt. Seine grösste Mächtigkeit erreicht dieser im Ballen-
winkel, da hier auch die Ausläufer der Hornblättchen, vom Eck-
strebenteile der Sohle kommend, mit den übrigen zusammenstossen.

In ganz ähnlicher Weise findet die Einpflanzung der Horn-

1) Vgl. auch Kunstium, l. c. p. 57.
blättchenenden in die Hornsohle statt. Auch hier bleiben sie als kleine streifenförmige Kanten noch lange sichtbar (sie lassen sich übrigens durch die ganze Sohle hindurch verfolgen).

Woher kommt nun dieser schräge Verlauf? Auf die Beantwortung dieser Frage werden wir später zurückkommen.

In den Vertiefungen zwischen je zwei solcher Streifen, die von den Enden der Hornblättchen ausgehen, sieht man am Übergangstheile der Kronenrinne und an der Sohle mit der Lupe kleine runde Löcher in regelmässigen Abständen. Es sind dies nichts Anderes als die Hornrühren der den Fleischblättchen an ihrem Übergange in die Fleischkrone und in die Fleischsohle aufsitzenden kleinen Papillen.

Die Hornblättchen schlagen sich ebenso wie Fleischblättchen am Eckstrebenwinkel auf die Sohle um, nehmen an Grösse mehr und mehr ab und verschwinden schliesslich.

Schen wir uns ein isolirtes und in Picrocarmin gefärbtes Hornblättchen bei schwacher Vergrösserung an, so bemerken wir, dass die Seiten desselben ein eigenartiges, streifiges Gefüge aufweisen, indem sie mit kleinen, parallel mit einander verlaufenden Längsleisten besetzt sind. Es sind dies die Sekundärhornblättchen, welche beim gewaltsamen Entfernen des Wandhorns aus dem Zusammenhange mit dem Rete Malpighii der sekundären Fleischblättchen herausgerissen wurden.

Ferner erkennt man schon mit blosem Auge an den Seiten des Hornblättchens kleine, dicht gedrängt stehende Lamellen, die sich durch ihre hellere Farbe von dem übrigen Gewebe abheben. Sie beginnen mit breiter Basis am Blattrücken und laufen bogenförmig in schräger nach abwärts geneigter Richtung bis zur Blattschneide, um dort scheinbar in einer feinen Spitze zu endigen (s. unten).

Auf Querschnitten, die wir durch die Hornblättchen anlegen, finden wir, dass die primären Hornblättchen aus einem centralen und einem peripheren Theile bestehen. Ersterer deutet durch sein Nichtfärbren in gewissen Farbstoffen (Picrocarmin) an, dass er aus stark verhorntem Gewebe besteht, dessen ehemalige zellige Struktur fast ganz verwischt ist und als deren letzter Rest sich langgestreckte, spindelförmige Kerne erhalten haben. Dieser centrale Theil, den wir bereits kennen gelernt haben (Figur 1 und 2), ist an seiner Aussenfläche von einer epithelialen Schicht umhüllt, von
welcher zahlreiche schmale Fortsätze von ungleicher Länge aus- gehen. Diese stellen nichts Anderes als die Secundärhornblättchen dar. In toto in Pierocarmin gefärbte Stücke, die nach dem Schneiden kurze Zeit in verdünnte Pierinsäure kamen, lassen diese Verhältnisse recht hübsch erkennen. Die innere centrale Schicht ist gelb gefärbt, die äussere periphere roth mit grossen, ovalen Zellkernen und zum Theil noch deutlicher Zellstruktur. Im Innern des centralen Hornstranges findet sich das in Form langer Haufen abgelagerte körnige Pigment. Der centrale Theil geht direkt in das Gewebe des Uebergangsteiltes über und umschliessen je zwei solcher Hornstränge die an ihrer Basis befindlichen schrag hinter einander gelegenen Querschnitte der Hornröhren, welche den kleinen Fleischpapillen entsprechen, in die sich die Fleischblättchen bei ihrem Uebergange in die Fleischkrone umwandeln. Die Querschnitte der Hornröhren liegen anfänglich dicht bei einander; sie rücken aber bald etwas auseinander, wobei zugleich ihre erst runde Form elliptisch wird (s. auch p. 212).

1) Den wellenförmigen Verlauf der primären Hornblättchen erkennt man auch recht gut an Tangentialschnitten durch die Basis der Fleischblättchen. — Dass dieser wellenförmige Verlauf in unserer Figur (1 u. 2) nicht zur Geltung kommt, hat darin seinen Grund, dass wir es hier mit einem pathologischen Process zu thun haben, bei welchem die Spannungsverhältnisse im Hufinnern andere geworden sind, wodurch der wellenförmige Verlauf der primären Hornblättchen (welchen man sonst stets beobachten kann) ausgeglichen wurde.
An Medianschnitten durch ein Hornblättchen täuscht dieser Umstand ferner noch vor, als ob die dem primären Hornblättchen seitlich aufsitzenden Secundärhornblättchen nicht, wie es in Wirklichkeit der Fall, in der ganzen Länge des primären Hornblättchens von oben nach abwärts verliefen, sondern als ob sie nur ganz kurz wären und durch dazwischen stehende, querverlaufende Balken des centralen Hornstranges getrennt wären. Dies ist jedoch keineswegs der Fall, sondern wird nur durch den wellenförmigen Verlauf des centralen Hornstranges bedingt, indem das Messer bei der Schnittführung das gekrümmte Gewebe ungleichmäßig angreift.

Am besten werden wir uns die Zusammensetzung der zwei Schichten, aus welchen die Hornwand besteht, klar machen, wenn wir Querschnitte durch den unteren Theil des Wandhornes an der Sohle anfertigen. Das Bild, welches nur solche Schnitte, die mit Safranin und Indigocarmin tingirt sind, zeigt, ist Folgendes:

Ganz nach aussen, am Rande der Hornwand, sehen wir eine Reihe von auffallend kleinen, länglichen Hornröhrchen. Es sind dies die von den kleinen Papillen des Fleischsaumes gebildeten Hornzellen, welche, wie erwähnt, für die übrige Hornmasse die Rolle einer Glasur spielen. In der Mitte eines jeden Hornröhrchens findet sich ein runder Raum, der mit zelligem Inhalte erfüllt, gegen die Umgebung deutlich abgegrenzt erscheint. Um diesen sind einige wenige Zellreihen, die Röhrchenwandzellen (Kunsien 1)) in zwiebelschalennässiger Anordnung gelagert.

Die Centren dieser Hornröhrchen sind nicht hohl, wie von einigen Autoren 2) angenommen wird, sondern sie sind mit scholligen, unregelmässig gestalteten Massen, die sich schneller als das übrige

1) S. Kunsien, l. c. p. 45.
lieber
den
feineren
Bau
des
Pferdehufes.

211

Je weiter wir nach innen vorscheitren, also zu der von uns als „Uebergangstheil (der Hornblättchen in die Hornwand) der Röhrenchenblattschicht“ bezeichneten Hornschicht gelangen, um so vollständiger ändert sich der Charakter unseres Gewebes. Die Röhrenchenwandzellen nehmen mehr und mehr an Menge zu, indem sich die Anzahl ihrer Zellreihen vergrössert. Die Zellen selbst werden dabei immer dunkler 2). Die Hornröhrchen erscheinen bei schwacher Vergrösserung wie mit einem dunklen, von Pigment herrührenden Huf umsäumt. Die Querschnitte derselben sind grösser geworden. Das Pigment findet sich nun hauptsächlich in den Röhrenchenwandzellen abgelagert, während das Zwischenhorn-gewebe im Gegensatz zu der eben geschilderten Schicht der Horn-

Dieser Uebergangstheil ist an der unteren Sohlenfläche schon mit blossem Auge an seiner helleren Färbung deutlich zu erkennen. Diese Stelle, die weisse Linie, ist für den praktischen Hufbeschlag in so fern von hoher Bedeutung, als sie von dem zum Festhalten des Hufeisens in die Wand eingetriebenen Nagel nicht berührt werden darf.

Querschnitte (mit Carmin gefärbt) durch den Tragrand von Hufen eben geborener Fohlen lassen den zelligen Charakter unseres Gewebes viel prägnanter erscheinen. Die Querschnitte der Hornröhren heben sich hierbei in Form kleiner rother Kreise von dem übrigen Gewebe ab. Das Innere derselben ist mit jugendlichen Hornzellen, die sich tingiren, angefüllt. Da die Papillen 1), welche auf Längsschnitten als dünne, fadenförmige, mit Retezellen bedeckte Gebilde auftreten, an der Fleischkrone bei solchen jugendlichen Individuen sehr eng gestellt sind, so sehen wir auch die Hornröhren dicht bei einander. Die Röhrenwandzellen sind noch nicht in so zahlreichen Lagen wie bei älteren Thieren vorhanden. Die Grenze zwischen Röhrenhorn und Blätchenhorn ist sehr scharf ausgeprägt. Dieselbe wird von den stärker verhornten Zellen des centralen Hornstranges der primären Hornblättchen gebildet, welche auf Querschnitten durch die Hornsohle als kleine bogenförmig verlaufende Linien angedeutet erscheinen. Das

1) Die Anlage der Papillen und der Fleischblättchen findet beim Foetus bereits in einem sehr frühen Stadium der Entwicklung statt. Letztere treten zuerst als schmale, blattförmige Sprossungen der Fleischwand auf. Dieselben verlängern sich nach und nach; sie senden jedoch schon sehr bald seitliche Fortsätze (die sekundären Fleischblättchen) aus.

Die obere Sohlenfläche besitzt in ihrer ganzen Ausbreitung ähnlich wie die Kronenrinne viele kleine, punktförmige Öffnungen, aus welchen die Papillen der Fleischsohle beim Lostrennen der Horntheile herausgezogen wurden. Diese Trichter verlaufen jedoch nicht senkrecht nach abwärts, sondern sind schräg von hinten nach vorn gerichtet. An der unteren Fläche der Sohle sind sie nicht mehr zu erkennen. Das Horn derselben löst sich leicht aus seinem Zusammenhange; es zerbröckelt und bildet das sogenannte todtte Horn. In gleichem Masse wie dieses an der unteren Sohlenfläche abgenutzt wird, findet von oben her ein Nachwachsen von Hornsubstanz statt.

Wie wir früher gesehen haben, flacht sich die Fleischkrone nach den Ballen hin mehr und mehr ab, wobei sie zugleich niedriger wird; desgleichen nehmen auch die Fleischblättchen nach rückwärts an Länge und Breite stetig ab. In gleichem Masse wie also der Mutterboden für die Hornbildung kleiner wird, wird naturgemäß auch weniger Horn produirt werden, und die Folge davon ist, dass die Dicke der Hornwand, welche an der Zehe am stärksten ist, nach rückwärts stetig abnimmt, so dass die Wandstärke an der Trachtenwand nur noch ungefähr ein Dritttheil derjenigen der Zehenwand beträgt.

Was hat dieses wohl für einen Zweck? — Theilen wir einen unversehrten Pferdehuf (nach Lechner) durch einen Querschnitt in eine vordere und eine hintere Hälfte, so finden wir, dass die erstere in Folge der reichlichen Hornmasse an der Zehe und der halben Seitenwand so gut wie unbeweglich ist, während die hintere dagegen, da der Druck, den die bedeutend verringerte Hornmasse ausübt, beträchtlich geringer geworden ist, eine ziemliche Beweglichkeit zulässt. Dieses hat nun den Zweck, damit die Horkapsel im Stande sei, der für die Bluteirculation im Hufinnern so
ungemein wichtigen Mechanik bei der Bewegung des Pferdes, welche auf Vergrößerung und Verengerung der hinteren Huftäfte (sogenannte Huftrotation) beruht, Rechnung zu tragen.

Wir haben wiederholt darauf hingewiesen, dass sich die Hornblättchen je weiter nach rückwärts um so schräger in die Hornwand einpflanzen, was sowohl an der Kronenrinne als auch an der Sohle in Form der lamellenförmigen Streifung zu erkennen ist, ein Umstand, der durch die mikroskopische Analyse völlig bestätigt wird (s. p. 212). Dies geschieht aus dem Grunde, um die Widerstandsfähigkeit der Hornwand, die nach rückwärts gradatim an Dicke abnimmt, auf gleicher Stufe zu erhalten, da die Bögen, welche die Hornblättchen im „Uebergangstheile“ der Wand bilden, immer schräger und länger werden, mithin ihre Tragfähigkeit mit dem Dünnerwerden der Hornwand in entsprechender Progression zunimmt\(^1\). Die Anlage dieser (Widerstands-) Kurven geschieht nur deshalb, um die Abnahme in der Masse der Hornwand in möglichst günstiger Weise zu ersetzen und die Widerstandsfähigkeit des Gewebes auf gleicher Stufe zu erhalten.

Das Wachsthum der Hornwand.

Bevor wir mit unserer Abhandlung zum Abschluss gelangen, wollen wir noch, gestützt auf das Bild, welches die mikroskopische Untersuchung zu Tage gefördert hat, einen Blick auf die Art und Weise werfen, wie sich das Wachsthum des Hornes im Hufe vollzieht.

Nehmen wir der besseren Übersicht halber 2 Papillen der Fleischkrone aus dem Zusammenhange heraus und vergegenwärtigen wir uns an diesen den Wachsthumsmodus. Denken wir uns diese Papillen der Einfachheit wegen in Gestalt eines Zuckerhutes und nur mit dem Rete bedeckt. Dieses producirnt nun zuerst eine Zellenlage, welche die ganze Papille wie ein Kegelmantel umhüllen wird. Indem nun eine zweite Zellenreihe gebildet wird, wird diese die erstgebildete um so viel nach aussen fortschieben, als der Raum, den sie einnimmt, beträgt. Indem nun Zelle auf Zelle gebildet wird, werden die älteren Zellen durch den Druck, den die nachwachsenden auf sie ausüben, stetig nach aussen gedrängt werden u. z. geschieht dieses in der Richtung des grössten Wachs-

\(^1\) Vgl. hierüber Hermann Meyer, die Statik und Mechanik des menschlichen Knochengerüstes. Leipzig, 1873, pag. 42—45 etc.
Ueber den feineren Bau des Pferdehufes.

thumsdruckes, welcher, da die Retezellen pallisadenförmig gestellt sind, mit der Längsachse dieser zusammenfallen wird. Die Zellen werden daher mit Ausnahme jener an der Spitze der Papille, welche nach abwärts gerichtet sind, nach seitwärts geschoben werden. Denken wir uns diesen Vorgang eine Zeit lang fortgesetzt, so bekommen wir ein Stadium, in welchem der Papillenmantel aus einer mehrschichtigen Zellreihe besteht. Da die älteren Zellen, welche durch den Druck, den die nachwachsenden auf sie ausüben, am weitesten nach aussen gelangt sind, grösser als die jugendlichen Zellen sind, so werden sie den Raum rings um die Papille völlig einnehmen. Schreitet der Wachstumsprozess weiter, so wird ein Zeitpunkt kommen, an welchem die Zellen der äussersten Schicht nicht mehr im Stande sein werden, die sich stetig vergrössernde Oberfläche aufzufüllen und mit ihren Nachbarzellen in Berührung zu bleiben. Es werden sich daher an einzelnen Stellen Lücken bilden, in die sich, da hier der Widerstand am geringsten ist, sofort Zellen der tieferen Lagen hineinschieben werden. Unsere beiden Papillen stossen mit ihrer Basis nicht aneinander — es kommt dieser Vorgang zwar auch vor, doch ist es Regel, dass die Papillen durch dazwischen gelegenes Horngewebe von einander getrennt sind — sondern sind durch Zwischenhorngewebe von einander geschieden. Auch hier werden die Retezellen in gleichem Masse wie diejenigen der Papillen Zellen produiren, die anfänglich noch unvollkommen entwickelt, sehr bald jedoch die charakteristische Gestalt der Stachelzellen annehmen und sich vermoge der stacheligen Beschaffenheit ihrer Oberfläche innig an die von dem Rete der Papillen gelieferten Zellen anschmiegen und mit diesen ein Ganzes bilden werden, in dem Verschiedenheiten in der Zellstruktur nicht zu erkennen sind. Die Zellen an der Basis der Papillen kommen, indem sie auf die ihnen entgegenwachsenden Zwischenhornzellen stossen, in's Gedränge. Sie müssen ausweichen und können dies nur nach einer Richtung, nämlich dahin, wo sie den geringsten Widerstand finden, dies ist nach abwärts. Da die Papillen sich nach unten verjüngen und schliesslich in einer Spitze (oder auch abgerundet) endigen, so haben die Mantelzellen derselben je weiter nach dem Ende der Papille um so mehr Spielraum zu ihrer Entwicklung; sie werden sich also nach den Seiten und nur die Zellen der Papillenspitze nach abwärts ausbreiten.
Indem also die Zwischenhornzellen an den Bildungsvorgänge lebhaften Antheil nehmen, werden wir ein späteres Stadium der Entwicklung antreffen, in welchem der Zwischenraum unserer beiden Papillen völlig mit Hornzellen ausgefüllt sein wird, resp. werden wir, da sich die Retezellen am Ende der Papillen in gleichem Masse an dem Wachstumsprozesse betheiligen, eine gleichmässig von oben nach abwärts heruntergewachsene Hornschicht finden, die noch ein Stück über das Niveau der Papillenspitzen hinabweicht. Die Mitte dieser Hornschicht wird naturgemäss von den am weitesten nach abwärts geschobenen und im Verhornungsprozesse, dem die Stachelzellen später anheimfallen, am weitesten vorgeschrittenen Zellen von der Basis der Papillen, resp. von dem Zwischenhorn innenommen.

In derselben Weise, wie wir dies eben geschildert haben, geht das Wachsthum im ganzen Umfange der Fleischkrone vor sich. Indem stetig neue Zellen gebildet werden, werden die älteren Schichten in gleichem Masse nach abwärts gedrängt, bis sie schliesslich die Hufsohle erreichen. Auf Querschnitten, die wir durch den Tragrand anlegen, sind noch die Spuren der Papillen in Form der Hornröhren zu erkennen, welche sich, wie wir gesehen haben, als kleine Kreise von dem übrigen strukturlosen Horngewebe abheben. Woher kommt dies und weshalb sind die Centren der Hornröhren, da doch die Zellbildung gleichmässig vor sich geht, anders beschaffen als das sie umgebende Horn?

Zur Beantwortung dieser Fragen können wir nur folgende Hypothese anführen: Das Wachsthum an den Seiten der Fleischpapillen findet in der Richtung der Cylinderzellen des Rete, also seitwärts, statt; unterstützt wird dieser Vorgang noch durch den innigen Zusammenhang, den die Zellen mit den vom Zwischenhorn nach unten wachsenden Nachbarzellen eingehen. Werden die Zellen durch den Wachstumsdruck nach abwärts geschoben und kommen sie auf ihrer Wanderung in die Nähe der wenigen, von der Papillenspitze abgesonderten Zellen, so sind sie bereits dem Verhornungsprozesse so sehr anheimgefallen, dass letztere sich mit ihnen nicht mehr so innig verbinden können. Die älteren Zellen, die schon früh mit ihren Nachbarzellen verschmelzen, bilden im Herunterwachsen eine Öffnung, die nachher von den Zellen der Papillenspitze ausgefüllt wird. Der Druck, dem die übrigen Zellen unterworfen sind, macht sich bei diesen nicht so sehr geltend. Sie
Ueber den feineren Bau des Pferdehufes.

verhornen daher auch nicht, sondern bleiben auf einer früheren Stufe der Entwicklung stehen und fallen vielfach der Fettmetamorphose1) anheim.

Leisering2) erklärt sich diese merkwürdige Thatsache in der Weise, dass an den Enden der Horn erzeugenden Zotten die Hornabsonderung in anderen Verhältnissen vor sich gehe, als an ihren oberen Theilen. Die Zellen, die hier erzeugt werden, legen sich lockerer nebeneinander, verhornen nicht in der Weise wie die übrigen Röhrenchen, und zerfallen leichter. — Die Ansicht dieses bekannten Fachmannes kommt uns nicht recht wahrscheinlich vor. Wesshalb soll die Hornabsonderung an den Spitzen der Papillen unter anderen Verhältnissen vor sich gehen? Im Gegentheil giebt uns die mikroskopische Analyse Aufschluss, dass die Papillenspitze mit denselben Zellformen bedeckt ist, wie das übrige Gewebe. In mangelhafter Ernährung kann die Ursache auch nicht liegen, da, wie wir gesehen haben, sich ein reiches Capillarnetz bis zur Spitze hinzieht.

Kehren wir wieder zu unserem vorliegenden Thema zurück und wenden wir uns gleich zur Betrachtung der Wachsthumsvorgänge bei den Fleischblättchen.

1) Fetttröpfchen im Innern der Harnröhren wurden vielfach beobachtet. Vgl. Künsien, l. c. pag. 50 und 62. Ferner Leisering, l. c. pag. 107 (VI. Auflage).
2) l. c. p. 118.

Ebenso wie sich zwischen Fleischkrone und Fleischblättchen
keine Stelle findet, an welcher die Hornbildung sistirt, ist es auch am Uebergange der Fleischblättchen in die Fleischsohle der Fall. An Stelle der schwindenden primären und secundären Fleischblättchen besitzt der Sohlenrand Papillen, die unmittelbar in diejenigen der Fleischsohle übergehen. Indem sich der Sohlenrand und die Fleischsohle in gleichem Masse an dem Wachstumsprocess betheiligend und die hier producirten Zellen sich innig an die von oben herunterkommenden Zellen anschliessen, gelangt der Hornschuh nach allen Seiten hin zum Abschluss. Das Horn stellt mit-hin ein geschlossenes Ganze dar.

Die Wachstumsvorgänge im Innern des Hufes basiren auf dem Satz, dass die Bildung junger Zellen stets dort stattfindet, wo der geringste Widerstand ist. Lässt der Widerstand an irgend einer Stelle nach, so findet sofort ein Nachschieben (Nachfließen) junger Zellen und dadurch wieder Ausgleich der Spannungsverhältnisse im Innern der Zellen statt. Ist der Widerstand, der durch das Horn auf die Weichtheile ausgeübt wird, einmal aufgehoben, sei es auf künstlichem Wege u. s. w., so sehen wir, dass an dieser von Horn befreiten Stelle sofort eine rege Zellbildung vor sich geht. Ein Beispiel erläutert dies am besten. Denken wir uns das Horn an der Hufsohle an einer umschriebenen Stelle (z. B. Steingalle) entfernt, so wird sehr bald eine so üppige Proliferation junger Retezellen vor sich gehen, dass die Weichtheile weit über die Umgebung hervorwuchern werden¹). Diesem zu starken Bildungstrieb weiss der Veterinär durch Anwendung eines künstlichen Druckes (Druckverband) ein Ziel zu setzen. —

Das Wachsthum der Hornwand geschieht also in der Weise, dass das von dem Fleischblättchen produirte Horn auf seinem Wege nach aussen sich mit dem von der Fleischkrone herunterwachsenden verbindet, wobei es zugleich die Masse desselben dadurch, dass es sich zwischen die Hornröhrchen des Wandhohres hineinschiebt, verstärkt und zugleich der Richtung desselben nach abwärts folgt.

In dem Masse wie das Horn an der Sohle des Hufes abgenutzt wird, findet von oben herab ein stetes Nachschieben von Hornsubstanz statt.

¹) Eine krankhafte Hyperplasie der Papillen des Fleischstrahles mit enormer Absonderung findet sich bei dem als Hufkrebs bezeichneten Leiden.

Auf einen Umstand müssen wir hierbei noch aufmerksam machen. Wir haben bei Besprechung unserer Figur 1 erwähnt, dass dieselbe einem Präparate entstamme, bei welchem eine Verlöthung der Fleischblättchen mit den Hornblättchen bestanden hätte. Wie erklärt sich dieser Vorgang nun damit, dass ein stetes Nachschieben von Hornsubstanzen von oben herab stattfinde? — Trotzdem diese Verlöthung in Wirklichkeit bestand und so innig war, dass wir nicht im Stande waren, das Horn an der betreffenden Stelle (Zehenwand) von den Weichtheilen zu trennen, so glauben wir trotzdem annehmen zu dürfen, dass dennoch eine stete Neubildung junger Hornzellen, wenn auch nur in sehr geringem Grade stattfand — da an und für sich schon die Zellproduktion des Rete hier auf ein Minimum beschränkt war, so war schon desshalb die Verbindung eine festere 1) — und in Folge dessen auch ein Nachschieben von Hornsubstanzen bestand. Wenn keine Hornbildung (also Stillstand im Wachsthum) mehr von Seiten der Fleischblättchen stattgefunden hätte, so müssten Trennungen des Zusammenhanges zwischen Kronenwandhorn (welches ja ungeschachtet der Vorgänge, die sich innerhalb der Fleischblättchen abspielen, nach abwärts wächst) und Blättchenhorn bestanden haben, was keineswegs der Fall war.

Recapituliren wir noch einmal kurz unsere Ansicht vom Wachsthum der Hornwand.

Die Hornwand besteht aus 2 Schichten; a) aus der Röhrchenschicht (mit der ihr aufsitzenden dünnen Glasur) und b) aus der Röhrchenblättchenschicht.

Für unsere Ansicht, dass der Uebergangstheil der Hornwand von der Röhrchenschicht zu trennen ist und mit der Blättchen-

1) Je reichlicher die Malpighi'sche Schleimschicht Zellen producirt und je weniger schnell diese verhornen, um so lockerer ist die Verbindung zwischen Horn und Rete. Daher Loslösungen der Horntheile bei krankhaften gesteigerter Ueberproduktion junger Zellen.
sicht, welche einen Theil desselben darstellt, ein Ganzes bildet, spricht Folgendes:

1) Der Übergangstheil ist von der Röhrchenschicht durch eine an der Kronenrinne deutlich wahrnehmbare Linie geschieden.

2) Die Hornblättchenenden lassen sich an der Kronenrinne bis zu der eben erwähnten Grenzlinie verfolgen.

4) Unter dem Mikroskope sieht man, dass sich der centrale Hornstrang der primären Hornblättchen weit in das Gewebe des Übergangstheiles fortsetzt.

5) Der schräge, nach aussen gerichtete Verlauf der Sekundärfleischblättchen (mit den Retezellen) deutet schon die Richtung des Fortschubes nach aussen an (s. Fig. 1, oben).

6) Der Abstand zwischen den Hornröhren des Übergangstheiles nimmt nach dem Tragrande etwas zu, während sich zugleich das Zwischenhorngewebe vermehrt.

7) Die Hornblättchen nehmen nach abwärts an Dicke zu.

8) Querschnitte durch das Wandhorn von Häfen eines eben geborenen Fohlen lassen erkennen, dass die innerste Schicht des Wandhorns keine Hornröhren besitzt, mithin von den Fleischblättchen erzeugt wurde.

Es fragt sich nur noch, in wie fern unsere Wachsthumstheorie mit der von anderen Forschern aufgestellten übereinstimmt.

Es würde viel zu weit führen und die Arbeit unnöthig in die Länge ziehen, wollten wir auf die vielen in Betreff des Wachstums
der Hornwand aufgestellten Hypothesen auch nur annähernd eingehen. Wir können dies um so eher, als Künsien\(^1\) in seiner trefflichen, bereits öfters citirten Abhandlung über die Entwicklung des Hornhufes bei einigen Ungulaten eine übersichtliche Zusammenstellung der Wachsthumstheorien giebt und verweisen wir hiermit auf diese Abhandlung. Desgleichen bringt Leisering\(^2\) in seinem Werke: der Fuss des Pferdes etc. Ausführliches hierüber.

Unsere Wachsthumstheorie nähert sich am meisten der von Künsien\(^3\) ausgesprochenen Ansicht, dass nämlich die innere Schicht des Wandhorns in der Richtung von innen nach aussen wächst; dass ferner die aus den Hornblättchen nach aussen rückenden Hornzellen sich beim Hufe zwischen die inneren Hornröhrchen (d. i. die Röhrchen der weissen Schicht) drängen und mit diesen mit nach unten gezogen werden, so dass die Abstände dieser Hornröhrchen von einander nach unten zu sich vergrössern.

Leisering\(^4\) weicht in sofern von unserer Ansicht ab, als er die Zellen der Fleischblättchen sich nur in der Weise an der Bildung der Schutzschicht, wie er sämmtliches von der Kronenwulst erzeugte Horn nennt, betheiligen lässt, als die von den Enden der Fleischblättchen abgesonderten Zellen sich in den zwischen zwei Hornblättchen befindlichen Lagen an das von der Kronenwulst producirte Horn so anlegen, wie der Mörtel an eine Wand.

Die übrigen Ansichten über das Wachsthum sind von Künsien und Leisering bereits so treffend widerlegt, dass wir hierauf nicht näher einzugehen brauchen und verweisen wir hiermit auf die beiden oben citirten Abhandlungen.

1) Künsien schreibt sich merkwürdiger Weise auf dem Titelblatte seiner Dissertation Künsien, in der Einleitung seiner Arbeit dagegen Kundzin.

2) Leisering, l. c. pag. 122—125 (VI. Auflage).
3) l. c. pag. 69.
4) l. c. pag. 122.
Erklärung der Abbildungen auf Tafel XV.

*Fig. 1. (Schwache Vergrösserung.) Querschnitt durch die Fleischblättchen (Zehe); dieselben sind mit den Hornblättchen verlötet. Linker Vorderhuf eines 16jährigen Pferdes.

*Fig. 2. Ein Theil von Fig. 1 bei stärkerer Vergrösserung. In der Mitte befindet sich ein Fleischblättchen, ihm zur Seite je ein Hornblättchen.

*Fig. 3. (Schwache Vergrösserung.) Querschnitt durch die Fleischblättchen eines normalen Hufes (in mittlerer Höhe der Seitenwand). Die Retezellen sind vollständig an den Rändern der Blättchen haften geblieben. An der Basis der Fleischblättchen sind die Anfänge der primären Hornblättchen sichtbar.

Fig. 4. (1:550; System F. Ocular II.) Stachelzellen mit einfach und doppelt contourirten Kernen; a bis c beginnende Pigmentablagerung.

Fig. 4d. (1:1020; F. O. IV.) Stachelförmige Fortsätze der Stachelzellen, isolirt.

Fig. 5. (1:145; C. O. II.) Querschnitt durch eine Fleischpapille an der Krone. C. = Stratum corneum; G. = Gefässe im Querschnitt; N. = Nerven im Querschnitt; R. = Rete Malpighii; Strp. = Stratum papillare (nach Hämatoxylin).

Fig. 6. (1:550; F. O. II.) Schnitt durch die Media einer grösseren Arterie (von einem Rehhufe, nach der Weigert'schen Hämatoxilinfärbung für das Centralnervensystem).

Fig. 7. (1:36; aa. O. III.) Querschnitt durch die Wand eines injicirten Fohlenhufes; halbschematisch, nach einem mikroskopischen Präparat. B. = Fleischblättchen; G. = arterielles Gefäss, Zweige in die Fleischblättchen sendend; H. = Hornblättchen, bei x Gabelung eines Hornblättchens; Hr. = Hornröhrchen der Hornwand; S. = Secundärhornblättchen.

Fig. 8. (1:550; F. O. II.) Isolirte Nervenfaser, nach Osmiumsäurebehandlung. K. = spindelförmig gestaltete Kerne der Schwann'schen Scheide (Sch.).

Fig. 9. (1:550; F. O. II.) Isolirte Nervenfaser, deren Inhalt durch Gerinnungsvorgänge in Stücke zerfallen ist (nach Osmiumsäure). Im untersten Theile des Nerven 2 kleine, wandständige Kernchen.
*Fig. 10. (Schwache Vergrösserung.) Längsschnitt durch eine Fleischpapille des Sohlenrandes. Die dunklen Linien im Innem denten den Verlauf der Nervenfasern an (nach Osmiumsäure).

Fig. 11. (1: 235; D. D. O. II.) Nervenendigung in einer Papille des Sohlenrandes. N. I = Nerv mit kolbenförmiger Anschwelling; N. II ein anderer Nerv, der scheinbar mit dem ersten nach abwärts zusammenstösst; x = Schicht von Retezellen, die die beiden Nerven von einander trennt (nach Osmiumsäure).

Fig. 12. (1: 1020; F. O. IV.) Spindelförmige Anschwelling in der Mitte einer Nervenfaser, vom Sohlenrande (nach Osmiumsäure). Ob Ganglion?

Fig. 13. (1: 550; F. O. II.) Aehnliche Anschwelling (nach Goldchlorid).

Fig. 14. (1: 550; F. O. II.) Dasselbe (nach Osmiumsäure).

Fig. 15. (1: 235; D. D. O. II.) Dasselbe.

Fig. 16. (1: 550; F. O. II.) Zwei feine Nerven mit spindelförmiger Anschwelling (nach Osmiumsäure).

Berlin, Juli 1886.
Beiträge zur Entwicklungsgeschichte der Knochenfische.

Von

K. F. Wenckebach, med. cand. in Utrecht.

Hierzu Tafel XVI und XVII.

Die Herkunft der Periblastkerne 1).

1) Ich nehme den von Agassiz und Whitman eingeführten Namen „Periblast" gerne an, weil die betreffende Protoplasma-Schicht der Teleostier dem Parablaste im Sinne von His u. a. durchaus nicht entspricht.

Die frischen Eier von Belone wurden von den langen, faserförmigen Anhängen befreit, sodann auf einem Objectträger mit tiefem Hohlschliff in Seewasser untersucht. Mit Hülfe ganz dünner Deckgläser war es mir möglich, die Eier mit ziemlich starker Vergrößerung zu beobachten und die Vorgänge am lebenden Ei zu studiren.

Beide Kerne fangen alsbald wieder an, sich zu theilen. Demnach vermehrt sich die Anzahl der freien Kerne ziemlich rasch und erklärt es sich, dass während einiger Zeit die freien Kerne
Beiträge zur Entwicklungsgeschichte der Knochenfische. 227

Die Vermehrung der freien Kerne wird bei Belone noch beschleunigt durch einen zweiten Vorgang, welchen ich zu wiederholten Malen an Eiern beobachtete, die sich später ganz normal weiter entwickelten und die also ohne Zweifel auch damals normale Verhältnisse darboten. Die Wände der Randzellen werden nämlich allmählich destruirt, sie verfließen sehr langsam mit der Periblastmasse. Dadurch kommen natürlich die Kerne dieser Zellen direct frei zu liegen in der umgebenden Periblastmasse, welche sich zu dieser Zeit auch noch nicht vom Protoplasma der Zelle des Blastoderms unterscheidet. Dieser Abbruch an dem Rand des Blastoderms (vgl. die Wände in Fig. 1—2 und Fig. 3—4) währt wahrscheinlich nicht sehr lange. So weit ich beobachten konnte, verschwinden auf diese Weise nur die Zellgrenzen der äusseren zwei oder drei Zellenreihen.

Die Verkleinerung des Blastoderms ist also viel geringer als die Zunahme desselben in Folge der Zelltheilung. Ich möchte noch ausdrücklich hervorheben, dass es sich hier nicht um irgend welche Kunstprodukte handelt, weil ich dasselbe mehrmals beobachtete an frischen Eiern, welche, wieder in circulirendes Wasser gebracht, sich ganz normal weiter entwickelten. Die Abbildungen 1, 2, 3 und 4 sind direct nach den lebendigen Objecten skizziert1).

1) An einigen eben von mir untersuchten Blastodermen von Perca fluviatilis finde ich fast ganz dieselben Verhältnisse, wie bei Belone; ich glaube also auch hier die freien Kerne als von den Randzellen des Blastoderms herrührend betrachten zu können.
Bevor ich das weitere Schicksal der auf diese Weise in den Periblast gerathenen Kerne verfolge, muss ich bemerken, dass die Randzellen des Blastoderms nicht immer die einzigen Zellen sind, welche Kerne für das Periblast liefern. Dies lehrte mich ein Präparat, das ich in Fig. 6 abgebildet habe.

Als ich im Sommer 1885 in der zoologischen Station in Neapel den Auftrieb täglich durchsuchte, fand ich unter den oft zahllosen pelagischen Eiern 1) einige Formen, welche dort noch nicht bemerkt waren und meines Wissens noch nicht beschrieben sind. Diese Formen waren:

1. Ein Ei mit einem Durchmesser von 2 mm; das eng um den Dotter schliessende Chorion zeigt auswendig eine polygonale Structur. Bei starker Vergrösserung nimmt man wahr, dass dasselbe zusammengesetzt wird von niedrigen Leistchen, welche kleine sechseckige Felder begrenzen (Fig. 5 a b).

Dotter und Chorion sind beide wasserklar.

2. Das grösste pelagische Ei, das ich je gefunden habe. Diameter 4 mm. Die Dottermasse hat einen Diameter von nur 2 mm; dieselbe schwebt also frei in dem geräumigen Chorion. Chorion, Dotter und Embryo ebenfalls wasserklar. Der Dotter ist scheinbar gefurcht.

Die in 1 und 2 beschriebenen Eier waren prachtvolle Objecte zur Untersuchung, leider nur in sehr geringer Anzahl vorhanden. Von dem sub 2 genannten Ei fand ich nur fünf oder sechs Stück. Einige derselben conservirte ich nach der von Agassiz und Whitman angegebenen Methode und erhielt davon lückenlose Schnittserien. Freilich habe ich nur ein einziges Exemplar in dem in Fig. 6 abgebildeten Stadium schneiden können; das Präparat zeigt aber die Verhältnisse so deutlich, dass ich nicht zögere, mich hier auf dasselbe zu beziehen. Es treten hier an einer grossen Anzahl von Zellen an der unteren Seite des Blastoderms dieselben Variationen in der Färbung auf, welche Agassiz und Whitman 2) an den Randzellen der Ctenilabrus-Eier beschreiben. Die Zellen

2) Agassiz and Whitman, l. c. p. 55.
und Kerne sind mehr gefärbt. Dabei zeigen sie aber auch Veränderungen in Gestalt und Grösse. Die Zellen schwellen einigermaassen auf, lösen sich von einander ab, nehmen eine unregelmässige Gestalt an und fallen auf den Boden der Furchungshöhle; hier verschmelzen sie mit der Periblastmasse. Die Kerne bleiben daselbst liegen und werden so zu freien Periblastkernen. Sie unterliegen hier also schon im Blastoderme den auf hydropische Degeneration hinweisenden Veränderungen, welche wir auch bei den aus den Randzellen herrührenden Kernen werden auftreten sehen.

Das Präparat ist so deutlich, dass ich nicht glaube dasselbe anders interpretiren zu können. Man kann doch schwerlich annehmen, dass urplötzlich im Periblaste ganz fertige Kerne auftreten sollten, welche Protoplasm um sich sammeln und nachher sich dem Blastoderme anschliessen könnten. Wäre nicht schon eine solche spontane Kern- und Zellbildung bei dem heutigen Stande der Wissenschaft äusserst unwahrscheinlich, so spräche doch auch in dieser Figur alles gegen eine solche Erklärung.

Ich meine also bewiesen zu haben, dass die freien Periblastkerne bei den Knochenfischen immer aus dem Blastoderm stammen, und zwar entweder treten sie aus den Randzellen in’s Periblast, wie Agassiz und Whitman zuerst behaupteten, oder sie stammen aus Zellen, welche von der unteren Fläche des Blastoderms auf den Boden der Furchungshöhle fallen, um dort mit dem Periblast zu verschmelzen.

Vielleicht treten diese beiden Vorgänge zuweilen (oder auch immer?) zusamm en auf, wie mir dies in vielen Fällen höchst wahrscheinlich vorkommt. Aus Figur 6 geht hervor, dass auch in diesem Eie, wo so viele Zellen sich vom Blastoderme lösen, auch wohl Kerne aus den Randzellen des Blastoderms stammen. Oellacher hat also wahrscheinlich Recht, wo er beschreibt, wie beim Bachforellenei Zellen sich von der unteren Fläche des Blastoderms lösen, auf den Boden der Furchungshöhle fallen und sich ins Periblast eingraben, abgesehen davon, dass er die veränderten Kerne für

Zellen ansieht. Die Kerne, welche er in Taf. I, Fig. 4 und 5 z' abbildet, sind denn auch wohl aus den Randzellen getreten. Es erklärt sich somit aus der Combination dieser Vorgänge, wie man schon so bald die Kerne auch unter dem Blastoderme und nicht nur in dem Randwulste antreffen konnte.

Hoffmann giebt in seiner Schrift: "Zur Ontogenie der Knochenfische" eine ausführliche historische Uebersicht über diese Frage. Ich glaube dieselbe also hier weglassen zu können, doch möchte ich folgende Bemerkungen machen:

Wie schon gesagt, muss freie Kernbildung im Dotter oder im Periblast der Knochenfische gänzlich verworfen werden. Niemand hat dieselbe bis jetzt genau beschreiben können, weil es durchaus keine Zwischenstufen zwischen Dotterelementen und Kernen gibt. Sie ist nur von einigen Forschern, wie Kupffer¹), van Beneden²) u. a. angenommen, weil diese Beobachter auf einmal die Kerne sahen, ohne gesehen zu haben, woher dieselben gekommen waren.

Die Ansicht Hoffmann's, dass die Periblastkerne direct von der ersten Kernspindel herrühren, ist durch spätere Untersuchungen nicht bestätigt worden. Ryder³) nimmt dieselbe ohne weiteres ungeändert von Hoffmann über.

Brook⁴) und Goronowitsch⁵) haben sich kein Urtheil über diese Frage bilden können. Agassiz und Whitman weisen aber genügend auf die Mängel hin, welche den Theorien Hoffmann's ankleben, und ich kann mich nur jenen beiden Forschern anschliessen.

3) John A. Ryder, A contribution to the Embryography of osseous Fishes, with special reference to the development of the cod. Report of Am. comm. of Fish and Fisheries 1884. pag. 482.
Beiträge zur Entwicklungsgeschichte der Knochenfische. 231

Dabei glaube ich jetzt die Herkunft der Periblastkerne aus dem Blastoderm durch die Untersuchungen von Agassiz und Whitman und durch meine directen Beobachtungen genügend festgestellt.

Zu dieser Ueberzeugung fühle ich mich auch entschieden dadurch gedrängt, dass die Kerne, nachdem sie in den Periblast gekommen sind, unzweifelhaft einer langsamen Degeneration unterliegen). Anfangs behalten die aus den Randzellen stammenden Kerne genau das Aussehen und die Grösse der Zellkerne des Blastoderms bei (Fig. 6 F. K. R.). Zu der Zeit aber, wo sich die Keimblätter zu differenziren anfangen, unterliegen die freien Kerne einer charakteristischen Veränderung. Sie schwellen auf, nehmen eine relativ bedeutende Grösse an und zeigen in gefärbten Präparaten eine unregelmässige, grossmaschige Structur, welche augenscheinlich abhängig ist von Vacuolenbildung innerhalb des Kernes. Niemals wird jetzt mehr Theilung dieser Kerne wahrgenommen. Wie schon gesagt, zeigen die Kerne der von der

unteren Fläche des Blastoderms sich lösenden Zellen diese Veränderungen schon, bevor sie noch im Periblast liegen. Die aus den Randzellen stammenden Kerne theilten sich aber erst noch einige Male, um erst später aufzuschwellen (vgl. die Kerne in Fig. 6).

Auch das weitere Schicksal der freien Kerne ist Degeneration. Wenn der Embryo schon längst aus der Eihülle geschlüpft ist, findet man als letzte Reste des Dotters eine protoplasmareiche Masse, in welcher die Kerne haufenweise aufeinander gepackt liegen. Die Umrisse der letzteren sind unregelmässig geworden, man erkennt keine Struktur mehr und diese homogen rotgefärbten Klumpchen fließen schliesslich zusammen und werden so resorbirt.

Ob die Kerne irgend eine Function haben, die Bestandtheile des Dotters oder des Periblasts assimiliren, oder ähnliches, kann ich nicht entscheiden; doch kommt die von Hoffmann1) aufgestellte Theorie mir am annehmbarsten vor, dass nämlich die Kerne irgend einen Einfluss auf die Dotterelemente haben, und diese in einen zur Resorption geeigneten Zustand bringen.

Kupffer2) und später auch Kingsley und Conn3) haben beschrieben, wie um die Periblastkerne Zellgrenzen auftreten und eine Art Pflasterepithelium entstehe. Viele Autoren bezweifelten diesen Vorgang und ist derselbe auch nicht wirklich festgestellt worden. Ich habe die Eier von Gasterostenus und Spinachia nicht untersucht, habe aber bei anderen Species (Belone, Blennius u. a.) ähnliche Bilder bekommen, wie Kupffer2) in Fig. 1 Taf. XVI abbildet. Die regelmässige Lagerung der Kerne ist aber, wie aus dem oben Gesagten hervorgeht, dadurch zu erklären, dass dieselben zur selben Zeit aus den Randzellen des Blastoderms getreten sind. Was die Zellcontouren betrifft, so haben wir es nicht etwa mit

1) C. K. Hoffmann, l. c.
2) C. Kupffer, l. c.
ausserhalb des Blastoderms entstehenden Zellen, sondern mit Randzellen zu thun, welche im Begriff sind, mit der Periblastmasse zu verschmelzen, wie ich dies bei Belone beobachtete und oben beschrieben habe. Ebenso ist auch die Fig. 24 a, Taf. XV in der Arbeit von Kingsley und Conn\(^{3}\) zu erklären, wie auch die Fig. 4 Pl. I in Ryder's Arbeit über Cybium\(^{1}\) und Fig. 3 Pl. XIX in Ryder's Arbeit über Belone\(^{2}\).

Die Theilnahme des Periblasts an der Bildung des Hypoblasts kommt mir ebenfalls höchst zweifelhaft vor. Auch die jüngsten Untersuchungen von Brook\(^{3}\) und von Cunningham\(^{4}\) haben mich nicht überzeugen können. So lässt Cunningham den Boden des Darmrohrs aus den Periblastkernen entstehen. Ist es an sich schon nicht anzunehmen, dass das Darmepithel von zwei so verschiedenen Elementen aufgebaut werden sollte, so stützt sich die Angabe Cunningham's nur darauf, dass er zu der Zeit, wenn das Hypoblast sich eben ventral zum Darmrohr zusammengefaelt hat, unter demselben keine freien Kerne in der Periblastschicht fand. „We may conclude also“, sagt er, „that this portion of the periblast has been used up to supply the cells of the floor of the gut“.

Freilich kein überzeugendes Argument.

Goronowitsch\(^{5}\), der ebenso wenig wie ich je in diesen Stadien noch Kerntheilungsfiguren sah, die aufgeschwollenen Kerne aber mit Zellen identifizirte, fand keine Bilder, „welche hätten erkennen lassen, dass solche parablastischen Zellen den unteren Schichten des Entoderms in den seitlichen Theilen des Embryo sich anschliessen“.

Es kommen überhaupt keine wahren Zellen im Periblast oder im Dotter der Knochenfische vor. Agassiz und Withman\(^{6}\) erwähnen ein ellipsoidisches Ei (Osmerus?) und noch einige an-

3) G. Brook, l. c.
5) N. Goronowitsch, l. c. p. 422.
6) Agassiz and Whitman, l. c. pag. 24 und 31.
dere Fischeier, wo der Dotter in grossen polygonalen Zellen segmentirt ist und die beiden Forscher suchen eine Stütze für eine morphologische Vergleichung der Eier der Teleosteer und anderer Vertebren "in the actual cleavage of the yolk in some teleostean ova, as first noted by Mr. Agassiz". In Neapel fand ich zahlreiche pelagische Eier, welche ebenfalls das Bild eines gefurchten Dotters darboten. Hierzu gehörte u. a. das auf Seite 228 sub 2 beschriebene Ei und auch ein oft in sehr grosser Zahl vorhandenes ovales Ei. Ich kann nicht entscheiden, ob letzteres einer Osmerusart angehörte und mit dem von Agassiz und Whitman erwähnten Eie übereinstimmt; der Querdurchmesser maass nur die Hälfte der Längsachse und es entwickelte sich das Blastoderm an einem der Eipole; Oeltropfen waren nicht vorhanden. Ich muss aber nachdrücklich darauf hinweisen, dass es sich hier nicht um eine etwa dem Amphibieneie vergleichbare Dotterfurchung handelt. Ich konnte weder an lebendigen noch an in Schnittserien zerlegten Embryonen eine Spur von Kernen oder Zellgrenzen finden. Es ist hier aber eine relativ regelmässige Theilung des Dotters eingetreten, abhängig von dünnen protoplasmatischen Fortsätzen des Periblasts, welche dem Dotter ein gefurchtes Aussehen verleiht.

Es kommt mir also vor (wie auch Agassiz und Whitman meinten), dass die von His aufgestellte Parablastetheorie auch in der Form, welche ihr Waldeyer gegeben hat, soweit es die Knochenfische angeht, keine Begründung hat, indem erstens keine Kerne oder Zellen im Periblasten oder im Dotter entstehen, zweitens die Kerne des Periblasts nach ihrem Austritt aus dem Blastoderm degeneriren und nicht direct am Aufbau des Embryo sich betheiligen.

Die Entwicklung des Herzens und der Blutgefässen.

Die Entwicklung des Herzens und der Blutgefässen habe ich hauptsächlich an lebendigen Belone-Embryonen studirt; ferner auch so weit möglich an Embryonen von Blennius, Gobius, Syngnathus und vielen pelagischen Eiern. Hierbei bekam ich folgende Resultate:

Bald nachdem sich das Hypoblast ventral zum Darmrohr geschlossen hat, findet man an der unteren Seite des Embryo, kurz hinter den Augenblasen, ein Band mesoblastischer Zellen. In-
mitten dieses Bandes bildet sich eine anfangs geringe Anhäufung von Zellen. Fig. 7 und ff. zeigen, wie ich dasselbe bei Belone fand. Dieses Zellenband unter dem Embryo habe ich an verschiedenen pelagischen Eiern (wenigstens bei fünf Species) gefunden und zwar oft viel deutlicher als bei Belone, und es gelang mir hier, durch die ausserordentliche Durchsichtigkeit von Dotter und Embryo festzustellen, dass diese Zellen herrühren von den indifferenten Mesoblastzellen im Kopfe, indem sie von oben her um den Darm hinwandern, um von beiden Seiten unter demselben zusammen zu treffen, was ich auch durch Schnittserien von Belone-Embryonen bestätigt fand.

Die Anhäufung von Zellen, welche sich inmitten des Bandes bildet, spaltet sich schon bald und bildet so eine Art Tasche (Fig. 7a, 7b). Diese nimmt schon nach ungefähr 16 Stunden die Form eines kleinen Säckchens an, welches sich bald nach vorne hin verlängert, indem es an dem hinteren Ende fest am Embryo verbunden bleibt. Wie aus Fig. 8 bis Fig. 11, welche die Ansicht des Herzens von oben und von der Seite in verschiedenen aufeinander folgenden Stadien darstellen, hervorgeht, nimmt das Herz bald eine Schlauchform an und am 9. Tage fängt es schon an sich zu kontrahieren, erst nur an dem vorderen Ende, wie es die punctirten Linien in Figur 10 andeuten.

Es werden jetzt die Verhältnisse ein wenig deutlicher: Man nimmt wahr, dass die Ränder der vorderen Öffnung des Herzschlauches sich fortsetzen in eine ausserordentlich dünne Membran, gebildet von blassen Zellen, welche mit langen protoplasmatischen Fäden zusammengenhangen, welche Membran die Verbindung zwischen dem Herzen und der Umgebung deselben darstellt, sich also an die Unterseite des Embryo und die Oberfläche des Dotters heftet. Das Herz liegt nämlich jetzt direct auf dem Dotter und es befindet sich nicht noch eine Schicht von Hypoblastzellen zwischen dem Herzen und dem Dotter. Das Hypoblast hat sich nämlich in diesem Stadium schon zu dem Darme eingefaltet und dasselbe wird bekanntlich gänzlich zu diesem Organe verwendet. Es bleibt also nicht noch eine Schicht übrig, welche eventuell den Dotter umwachsen konnte, wie Hoffmann¹), Ryder²) u. a. beschreiben.

1) C. K. Hoffmann, l. c.
2) Ryder in allen oben citirten Schriften.
Ich beziehe mich bei dieser Behauptung nicht nur auf meine eigenen Beobachtungen an lebendigen und conservirten Embryonen, sondern auch auf die Arbeiten von Oellacher¹), Ziegler²), Cunningham³) u. a., aus welchen ebenfalls hervorgeht, dass der Dotter nicht von Hypoblast umwachsen ist, und es auch nicht sein kann, weil das Hypoblast gänzlich zum Darmrohr verbraucht wird. Wie oben gesagt ist, glaubt Cunningham dasselbe noch nicht einmal dazu hinreichend und lässt den Boden des Darmrohres aus den Periblastkernen entstehen.

Aus diesem Irrthum lässt sich wohl Hoffmann's Ansicht erklären, das Endothel des Herzens und der Gefässe werde von Hypoblastzellen gebildet. Abgesehen davon, dass die Fig. 9, Taf. II, Fig. 4, Taf. III und Fig. 3 und 6 von Taf. IV in Hoffmann's „Zur Ontogenie der Knochenfische“ 1882, wohl zu sehr schematisirt genannt werden dürfen, scheint es mir auch a priori unwahrscheinlichkeit, dass das Herzendothel von dem Epithelium bil- denden Hypoblast und nicht vom Mesoblast herzuleiten wäre, indem alle übrigen Endothelien doch unzweifelhaft vom Mesoblaste herrühren.

Das bald lebhaft pulsirende Herz verlängert sich immer mehr nach vorne, bis die vordere, venöse Öffnung vor den Kopf des Embryo zu liegen kommt (Fig. 12). Die Ränder dieser Öffnung heften sich jetzt unten am Dotter, oben an der Unterseite des Hornblattes, welches zusammengesetzt von grossen, flachen, polygonalen Zellen den ganzen Dotter umkleidet. Das Herz com- municirt also in diesem Stadium noch mit dem ganzen Raum zwischen Dotter und Hornblatt und bringt durch die von vorne nach hinten verlaufenden Contractionen die Flüssigkeit, welche sich in jenem Raum befindet, in die Gefässe des Embryo. Die Wand des Herzens hat sich jetzt differenzirt in eine äussere dickere und eine innere endotheliale Schicht, welche durch einen feinen Plasmafaden zusammenhängen, wie u. a. Balfour⁴) schon ganz richtig beschreibt. An der rechten

¹) Oellacher, l. c. 1873. Vgl. die Figuren auf Taf. IV.
²) E. Ziegler, Die embryonale Entwicklung von Salmo Salar. Inaug. Diss. Freiburg 1882 (vgl. Seite 50 und Fig. 1—7 auf Taf. IV).
³) J. T. Cunningham, l. c. vgl. Fig. 5.
Wand des Herzens bildet sich jetzt eine anfangs kleine Anschwellung, wobei auch die Wand ein wenig dicker wird (Fig. 12 und ff.). Mit diesem Vorgange leitet sich die Differenzierung der Herzkammer ein.

Das Herz ist immer mehr weniger nach der linken Seite des Embryo gewendet; dabei liegt das arterielle mit dem Embryo fest verbundene Ende immer in der Medianebene des Embryo, das venöse Ende aber unter dem linken Auge (Fig. 12).

In einem ähnlichen Stadium habe ich das Herz bei allen von mir untersuchten Embryonen gesehen. Bei Blennius fand ich ganz genau dieselben Verhältnisse, wie bei Belone, wie denn auch diese beiden Genera in ihrer Entwicklung einander sehr ähnlich sind. Auch hier hat sich der venöse Abschnitt des Herzens nur so wenig nach der linken Seite gewendet, dass dasselbe unter dem linken Auge liegt. Auch Syngnathus- und Gobiusembryonen zeigen diese Lage des Organes, hier sind aber die ersten Stadien nicht am lebendigen Embryo zu studiren, weil Dotter und Embryo zu undurchsichtig sind. Anders liegt das Herz bei den meisten pelagischen Eiern, wo sich dasselbe viel mehr krümmt (Fig. 19). Das Herz öffnet sich hier also nicht vor dem Kopfe, sondern ganz an der linken Seite des Embryo. Das arterielle Ende liegt aber immer in der Medianebene 1).

Einige Autoren haben das Herz der Knochenfische in diesem Stadium schon richtig abgebildet 2). Kupffer 3) hat in Fig. 32 und 33 das Herz von Perca und Gobius genau so abgebildet, wie ich dasselbe bei diesen Embryonen fand und er sah auch eine Spur von der ersten Anlage des Herzens bei Gasterosteus (Fig. 9) und bei Gobius (Fig. 23 und 30), konnte damals aber die Vorgänge noch nicht richtig deuten. Wo dieser Forscher aber die Entwicklung des Herings beschreibt 4), ist er, wie schon Hoffmann be-

1) Vgl. auch die Abbildungen des Herzens in Ryder's Arbeiten über Spanish Mackerel und Gadus morrhua.

2) Ich beschränke mich bei der Literaturbesprechung hauptsächlich auf die Autoren, welche die lebendigen Embryonen beobachteten und verweise auf die historischen Uebersichten, welche man in den Schriften Hoffmann's u. A. findet.

3) C. Kupffer, l. c.

4) C. Kupffer, Die Entwicklung des Herings im Ei; in Jahresberichte
merkte, auf falscher Fährte, indem er die Entwicklung des Herzens der Knochenfische und des Kaninchens für ganz identisch hält. Aus dem oben Gesagten geht hervor, dass davon schwerlich die Rede sein kann.

Erst als ich meine Arbeit druckfertig machte, lernte ich Ryder's Arbeit über Belone longirostris\(^2\) kennen und bemerkte, dass er in der Hauptsache die Entwicklung des Herzens und des Dotterkreislaufes beschrieben und abgebildet hat. Er meint aber auch, dass der Dotter von Hypoblast umwachsen ist und glaubt daher Blut und Gefässe vom Hypoblaste herleiten zu müssen, welche Meinung, wie aus den folgenden Zeilen hervorgeht, eine irrige ist.

Bevor ich mich den weiteren Veränderungen des Herzens zuwende, will ich die Entstehung der Blutgefäße auf dem Dotter beschreiben, weil nachher Herz und Blutgefäße nicht wohl gesondert zu behandeln sind.

Ich möchte hier aber folgende Bemerkungen vorausschicken: Die Embryologie der Knochenfische ist fast ausschliesslich untersucht auf Schnittserien der ganz undurchsichtigen Embryonen von Lachs und Forelle. Es ist hierdurch die Meinung herrschend, dass bei den Knochenfischen, ebenso wie dies bei andern Vertebraten beschrieben ist, die Keimblätter wirklich nur als Blätter wachsen, sich spalten u. s. w. und auf diese Weise die verschiedenen Organe bilden. Jede Zelle sollte also passiv sein und sich

1) John A. Ryder, l. c. (Embr. oss. Fishes) vgl. Taf. VI, Fig. 30 und Beschreibung.

2) John A. Ryder, l. c. (Evel. of Silver Gar).

An einem Beloneembryo von 4—5 Tagen findet man an beiden Seiten des Embryo eine Schicht von flachen, blassen Zellen, welche aneinander liegen, wie Fig. 22 es zeigt. Diese Schicht fängt am 5. Tage (Fig. 9) kurz hinter den Augenblasen an und reicht bis hinter das Ohr. Sie hängt mit dem Kopfmesoblast zusammen und ist zweifellos von mesoblastischem Ursprung. Ich habe nicht beobachten können, ob dieselbe als ein Rest des breiten Keimsaumes der ganz jungen Embryonalanlagen zu betrachten ist, oder ob die Zellen erst später aus dem Embryo auf den Dotter getreten sind.

Indem sich diese Schicht, welche als Embryonalsaum zu bezeichnen ist, allmählich bis vor den Kopf ausdehnt, wandern zahllose Zellen aus dem Rande derselben hinaus, und kriechen mit amoeboiden Bewegungen auf dem Dotter herum. Schon am 6. Tage bildet sich ein körniges, brannes Pigment im Protoplasma von vielen dieser Zellen. Die Pigmentzellen bewegen sich in nicht sehr grosser Zahl nach einer Stelle vor dem Kopfe des Embryo, wo alsbald der Sinus venosus des Herzens zur Entwicklung kommen wird (vergl. Fig. 9, Fig. 12 ff.). Sie lagern sich neben einander und heften sich mittelst starker protoplasmatischer Fäden an einander (Fig. 13 b). Indessen bildet sich immer mehr Pigment in diesen Zellen; der Kern tritt sehr deutlich hervor.

Nicht alle Zellen, die von dem Embryonalsaum auswandern, bilden Pigment. Eine sehr grosse Zahl derselben zerstreut sich über die Oberfläche des Dotters und diese sind als Material für die später sich dort bildenden Blutgefässer zu betrachten.
Dieses Austreten von Wanderzellen habe ich an Blennius-, Gobius- und Syngnathusembryonen ebenfalls beobachtet. Bei vielen pelagischen Embryonen tritt es in noch viel stärkerem Maasse auf. Hier wandern diese Zellen oft auch schon viel früher als bei Belone aus allen Seiten des Embryo aus. Eigenthümlich schien es mir, dass sehr viele Pigmentzellen bei pelagischen Eiern sich augenblicklich um die sich im Dotter oder vielmehr im Periblaste befindende Oelkugel lagern und zwar bei einigen Species so, dass die braungelb pigmentirten Zellen an die äussere Fläche, die schwarz pigmentirten an die nach innen gekehrte Seite der Oelkugel zu liegen kommen. Bei den pelagischen Eiern von Pleuronectiden, bei welchen sich nicht nur eine einzige Oelkugel im Dotter befindet, aber zahlreiche Häufchen von kleineren Fetttropfen in der oberen Dotterschicht gelagert sind, findet man ebenfalls fast ausnahmslos einige Pigmentzellen über jedem Häufchen ausgebreitet. Diese Neigung der Pigmentzellen wird vielleicht ihren Ursprung haben in Lichtbrechungserrscheinungen, welche die runde, stark lichtbrechende Oelkugel erzeugt; denn diese Zellen reagiren auf Licht, indem sie in starkem Lichte sehr lange Fortsätze treiben, im Dunkeln dieselben aber fast gänzlich einziehen, wie ich dies durch ein einfaches Experiment feststellen konnte1); diese Eigenthümlichkeit der Pigmentzellen ist übrigens bei Frosch- und Tritonlarven schon längst bekannt.

Nach einigen Stunden sieht man bei Belone auch aus andern Theilen des Embryo Wanderzellen austreten, vorn an dem Kopfe, an Schwanzende u. s. w. Jetzt fängt auch die Bildung der Blutgefässse auf dem Dotter an. Man sieht wie von der Stelle kurz hinter den Ohrbläschen, wo der Embryonalsaum endet, sich ein Gefäss bildet längs des Randes des Embryonalsaumes (vergl. Fig. 12).

1) Ich stellte eine Portion Eier während einiger Stunden in absolute Dunkelheit, eine andere Portion in helles Tageslicht, tötete nachher beide in heissem Sublimat, welches Reagenz bekanntlich die Elemente augenblicklich in situ fixirt und fand in den Embryonen der ersteren Portion kleine dicke Pigmentzellen mit sehr kurzen Fortsätzen; in der zweiten Portion waren sie aber flach ausgebreitet und mit sehr langen protoplasmatischen Ausläufern versehen.
In Bezug auf die feinere Struktur dieser ersten Dottergefäße habe ich Folgendes beobachtet. Es tritt von hinten nach vorne verlaufend an der Oberfläche des Dotters eine rinnenförmige Vertiefung auf, dem späteren Gefäße entsprechend. Diese Rinne wird ausgekleidet mit den Zellen des Embryonalsäumes, welche sich alle dorthin bewegen, so dass, sobald das Gefäss geschlossen ist, der Embryonalsäum verschwunden ist. Wiederholt habe ich hier und an anderen Gefäßen das Stadium gesehen, wo das Blutserum noch durch einen Kanal strömte, dessen Wände oben von dem den Dotter umgebenden Hornblatt, unten von der mit losen Zellen bekleideten Rinne im Dotter gebildet wurden (Fig. 21 a). Allmählich schliessen sich dann die Zellen mehr an einander an, indem sie flacher werden und mit langen Fortsätzen untereinander sich verbinden, bis sich eine mehr oder weniger feste Wand gebildet hat, welche das Gefäss ringsum begrenzt und sich vom Hornblatte ablöst (Fig. 21 b).

Sind die Gefässe bis vor den Kopf des Embryo gewachsen, so stellen sich die ebenfalls von hinten nach vorne sich bildenden Wände derselben in Verbindung mit der zelligen Membran, welche die venöse Herzöffnung an Dotter und Hornblatt heftet (Fig. 26). Diese Verbindung findet ebenfalls durch Vermittlung der amoeboiden Wanderzellen statt.

Indessen hat sich außer diesen Randvenen ein drittes Gefäss gebildet, das vom Schwanzende her median um den Dotter fortsehreit, um ebenfalls in den Raum vor dem Herzen sich-zu ergiessen (Fig. 12, 13, 13c, 14, 16, 17 und 18 m. D.).

Bei der Bildung dieses Gefässes ist die Rinne im Dotter, welche als erste Anlage des Gefässes auftritt, sehr deutlich zu sehen und besteht längere Zeit, bevor sie sich mit Wanderzellen auskleidet.

Die zwei Randvenen und das mediane Dottergefäss schliessen sich jetzt der Herzöffnung immer mehr an, indem sich die Gefäßwände dort sehr langsam weiter ausbilden. Es wird auf diese Weise ein abgeschlossener Sinus Venosus gebildet. Noch lange dient das Hornblatt als obere Wand dieses Raumes; der Boden desselben ist die Dotteroberfläche. Allmählich werden diese beiden Flächen ebenfalls mit Zellen ausgekleidet, und sobald sich eine eigene Wand gebildet hat, entfernt sich diese vom Hornblatte (Fig. 14 und 16).
Gerade auf der Stelle, wo das mediane Gefäß in den Sinus venosus eintritt, lagern sich die oben erwähnten, aus dem Embryonalsaum stammenden Pigmentzellen bandsförmig auf dem Boden dieser Höhle. Es scheint mir, als diene dieses Zellengebilde dort zur Befestigung der embryonalen Elemente, die sich hier zu den Gefäßwänden ausbilden, weil die Zuckung des Herzens auf dieser Stelle immer eine gewisse Spannung verursachen muss. Sind einmal die Wände der Gefäße ganz geschlossen, so bilden die Pigmentzellen ein Rohr um die Vereinigungsstelle der drei Hauptdottergefäße (Fig. 14).

Aus diesen Beobachtungen geht hervor, dass Mesoblastzellen durch selbständige amoeboïde Bewegungen die Wände der Blutgefäße des Dotters bilden.

An vielen Stellen treten diese circulirenden Zellen auch aus der noch mangelhaft geschlossenen Gefäßwand hinaus, wo durch die Anzahl der sich frei auf dem Dotter befindenden Wanderzellen beträchtlich zunimmt. Wohl am meisten treten diese Zellen aus an der Stelle, wo die Pigmentzellen vor dem Sinus venosus liegen, indem hier die Gefäßwand erst ziemlich spät vollständig ausgebildet wird.

Endlich werden die ersten circulirenden Zellen auch benutzt bei der Sprossenbildung der Dottergefäße. Die drei auf dem Dotter vorhandenen Gefäße fangen nämlich schon bald an kleine Seitenzweigchen zu bilden (Fig. 12 u. 13). Eine solche Sprossung wird eingeleitet von einer kleinen Ausbiegung der Gefäßwand (vergl. Fig. 25 a. b. c. d. e und f), an deren Spitze sich immer eine Zelle befindet. In dem Maasse als die Sprosse wächst, lagern sich immer neue, aber nicht sehr zahlreiche Zellen an dieselbe an,
welche sich auf die schon oben beschriebene Weise ausbreiten, sich mit langen Fortsätzen an einander befesten und so die Wand herstellen. Hierfür werden sowohl die vom Blutplasma herangeführen, als die sich schon auf dem Dotter befindenden Zellen verwendt. Diese letzteren Zellen scheinen eine grosse Neigung zu haben, Gefäße zu bilden, denn einige Male beobachtete ich, wie sich in diesem Stadium der Entwicklung freie, sich auf dem Dotter befindende Zellen, unabhängig von schon vorhandenen Gefäßen, zusammenlagerten und kleine Röhrchen bildeten, welche später in das System der Dotterblutbahn eingereiht wurden.

In dieser Weise entsteht ein ziemlich dichtes Gefässnetz auf dem Dotter. Der Blutstrom bleibt aber immer nach dem Sinus venosus gerichtet, wo sich das Blut sammelt, um vom Herzen in die Gefässe des Embryo gebracht zu werden.

Der Zusammenhang des Dotterkreislaufs mit den Gefässen im Körper des Embryo ist in Figur 13, 13c, 15, 18, 19 dargestellt.

Figur 13c und 15 zeigen, wie die bei allen bis jetzt untersuchten Knochenfischen vorhandene Schlinge in dem Schwanze entsteht. Hier bildet sich an der Schlinge ein Sprosse auf dieselbe Weise wie an den Dottergefässen.

Meine Beobachtungen an anderen von mir untersuchten Embrionen waren folgende: Blennius und Syngnathus verhalten sich wieder ebenso wie Belone; bei Gobius treten auch die drei Hauptdottergefäss auf, dieselben verzweigen sich aber nicht und es bildet sich also kein Gefässnetz auf dem Dotter (vgl. Fig. 17, 18).

amoeboider Bewegungen zwischen den Theilen des Embryo hinziehen.

Kehren wir jetzt zu der Beschreibung des Herzens zurück, so finden wir dasselbe jetzt gänzlich an die Dottergefäße angeschlossen. Die Anschwellung an der rechten Herzwand hat sich erweitert zur Herzkammer (Fig. 16, III), welche sich von der Vor- kammer abgeschnürt hat. Beide Theile des Herzens differenziren sich immer mehr.

Jetzt liegt das Herz gänzlich vor dem Kopfe des Embryo (Fig. 16), aber noch immer mit dem venösen Ende nach vorn. In dem Maasse als der Kopf des Embryo in die Länge wächst, dabei sich vom Dotter abschnürt und der Dotter resorbirt wird, verändert sich die Lage des Herzens zum Embryo. Es dreht sich das Herz (wie aus den Schemata in Fig. 20 hervorgeht), um sein arterielles Ende, bis es senkrecht zum Embryo steht, und schliesslich in seiner definitiven Lage (das arterielle Ende nach vorn) in den Körper des Embryo aufgenommen wird.

Der Dotter wird in die Leibeshöhle aufgenommen und dort gänzlich resorbirt. Die drei Hauptdottergefäße werden damit die Hauptvenen des Fischkörpers. Wie sich dieser Vorgang vollzieht, habe ich nicht genau an den lebendigen Embryonen verfolgen können, weil sich um diese Zeit schon zu viel Pigment gebildet hat, als dass man die inneren Organe noch deutlich sehen könnte.

Die Blutgefäße und das Herz sind also von mesoblastischem Ursprung und werden gebildet durch das active Treiben der Wanderzellen.

Aubert¹), Kupffer²) u. a. haben die Zerstreuung von Zellen auf dem Dotter schon einigermaassen beschrieben. Sie waren aber noch nicht im Stande die Vorgänge richtig zu deuten, weil sie meinten, dass der Dotter von Hypoblast umkleidet war. Kupffer meint, dass aus diesen Zellen Pigmentzellen und Blutkörperchen entstanden. Hinsichtlich der Pigmentzellen hat er Recht: aus dem folgenden Abschnitt wird es sich ergeben, dass die Blutkörperchen auf andere Weise entstehen.

Ryder³) hat die späteren Stadien des Dotterkreislaufs von

2) Kupffer, L. c. (Beobachtungen u. s. w.).
3) Ryder, L. c. (Embryography).
Belone longirostris schon richtig abgebildet. Er glaubt aber die Gefässe vom Hypoblast herleiten zu müssen, indem auch er meint, dass der Dotter mit Hypoblast bekleidet ist.

Das Lumen des Herzens und der Blutgefäße ist wohl zweifellos direct vom Blastocoel herzuleiten. Wie Ryder ganz richtig beschreibt, ist das Blastocoel bei den Knochenfischen sehr lange als ein ziemlich grosser Raum vorhanden. Es ist nämlich der Raum zwischen Hornblatt und Dotter identisch mit der Höhle, welche schon sehr früh unter dem Blastoderme auftritt (Fig. 6 Flh; und Agassiz und Whitman1), sowie Ryder haben nachgewiesen, dass diese wirklich die wahre Furchungshöhle ist.

Wie aus der oben gegebenen Beschreibung der Entwicklung des Herzens hervorgeht, wächst daselbe als ein offener Schlauch in die Furchungshöhle hinein: das Lumen des Herzens ist also nichts Anderes als ein Theil des Blastocoels.

Die drei Hauptdottergefäße sind ebenfalls nur Theile des Blastocoels, welche erst später mit dem Herzen durch sich allmählich bildende Gefäßwände zu einem einheitlichen Raum verbunden werden.

Die Bildung der grossen Gefässe im Körper des Embryo geht vom Herzen aus, indem das Lumen immer weiter zwischen den Organen hervordringt; dasselbe ist also auch vom Blastocoel herzuleiten.

Endlich rühren auch die kleineren Gefässe indirect vom Blastocoel her, weil sie als Sprossen der grossen Gefässe zu betrachten sind.

Diese Thatsahe ist eine grosse Stütze für die von Bütschli begründete „Theorie bezüglich der phylogenetischen Herleitung des Blutgefässapparates der Metazoen“ 2). Er meint nämlich bei allen Metazoen das Lumen des Blutgefässapparates vom Blastocoel herleiten zu dürfen, konnte aber diese Lehre für die Vertebraten noch nicht in befriedigender Weise begründen. Neulich hat Hubrecht3) beschrieben, wie auch bei den Nemertinen das

1) Agassiz and Whitman, l. c.
2) O. Bütschli, Morphol. Jahrb. Bd. VIII.
3) A. A. W. Hubrecht, Proeve eener ontwikkelingsgeschiedenis van
Lumen der Rüsselscheide und des Blutgefäßapparates ebenfalls vom Blastocoel herrühren.

Merkwürdig schien es mir, wie dieser Forscher auch bei den Nemertinen den Wanderzellen eine sehr grosse Rolle bei der Bildung aller Organe zuerkennt. Es wäre wohl zu untersuchen, wie sich dasselbe bei Embryonen anderer Gattungen verhält.

Die Herkunft der Blutkörperchen.

Über die Frage nach der Herkunft der Blutkörperchen giebt es fast so viele Meinungen als Autoren, welche dieselbe behandeln. Für eine historische Übersicht kann ich, so weit es die Knochenfische angeht, auf die Arbeit Hoffmann's¹) u. a. verweisen.

In dieser Hinsicht habe ich jetzt noch folgendes beobachten können:

Nur an einem pelagischen Embryo habe ich feststellen

1) Hoffmann, l. c. (1882).

3) E. Ziegler, Die embryonale Entwicklung von Salmo Salar. Freiburg 1882, S. 47.

4) J. Oellacher, l. c.
können, dass die Blutkörperchen aus einer Zellenmasse unter der Chorda entstanden. Es war ein kleiner, sehr stark pigmentierter Embryo, von welchem ich leider die Species nicht angeben kann. Es gewährte dieser Embryo ungefähr dasselbe Bild wie der Embryo von Perea.

Die definitiven Blutkörperchen bleiben oft während einiger Zeit in ziemlich grosser Anzahl in dem medianen Dottergefäß eben vor dem Sinus venosus hängen, werden aber bald wieder durch den Blutstrom mitgeführt. Diese Anhäufung von Blutzellen, welche dadurch verursacht wird, dass das Gefäß an dieser Stelle noch enger und unregelmässiger ist, als die übrigen Gefässe, hat Ryder 1) veranlasst, hier die Ursprungsstelle der Blutkörperchen anzunehmen. Freilich scheint es auch bei dem ersten Anblick so zu sein; allein bei längerer Beobachtung sieht man die wahren Verhältnisse, wie ich sie oben beschrieb. Ryder's Angaben sind hier auch einigermaassen unklar, so dass es nicht deutlich ist, ob er die Blutkörperchen aus den Dotterelementen, aus dem Hypoblast oder aus den freien Kernen entstehen lässt.

An Schnittserien von Beloneeiern ist es mir gelungen, den wahren Ursprung der Blutkörperchen zu entdecken und zwar auch in einem der intermediären Zellenmasse entsprechenden Zellengebi. Fig. 23 i. Z. zeigt, wie ich diese Zellenmasse in einem 17 Tage alten Embryo fand.

Diese intermediäre Zellenmasse entsteht aus Zellen, welche von den mesoblastischen Somiten her zwischen Chorda und Darmrohr hinein wachsen und sich dort vermehren, bis sie auf Querschnitten das in Figur 23 gegebene Bild gewähren. Sie entsteht also nicht wie beim Lachs durch das Zusammenschmelzen von zwei gesonderten Strängen, aber direct als ein unpaarer Zellenstreifen zwischen Chorda und Darmrohr.

1) Ryder, l. c. (Silver Gar).
Uebrigens kann ich noch mittheilen, dass ich die Verhältnisse der Blutentwicklung beim Lachs ebenso fand, wie Ziegler dies schon 1882 beschrieb.

Das Blut ist also rein mesoblastischer Natur und weder vom Hypoblast noch von den freien Periblastkernen herzuleiten.

Die vorliegenden Untersuchungen über die Entwicklung der Teleostier habe ich an der zoologischen Station in Neapel während des Frühjahrs und Sommers (März bis Juli) 1885 begonnen und im zoologischen Laboratorium der Universität Utrecht zu Ende geführt.

Utrecht, April 1886.

Nachschrift. Als meine Arbeit schon abgeschlossen war, kam mir die jüngste Arbeit Cunningham's in Hände. Hier beschreibt dieser Forscher an einem 27 Stunden alten Blastoderm von Gadus morrhua Folgendes (pag. 7). „... It is seen that the boundary between the edge of the blastoderm and the yolk is not sharply defined; that the cells of the edge of the blastoderm have no planes of division separating them from the yolk mass, though their nuclei and the planes of division separating them from one another and from the other cells of the blastoderm can be distinctly seen“ (Fig. 12).

Er glaubt daher ebenfalls die freien Kerne von den Randzellen des Blastoderms herleiten zu dürfen und bestätigt also die Untersuchungen von Agassiz und Whitman.

Wo Cunningham aber das spätere Schicksal des Periblasts des Teleosters beschreibt, vermag ich ihm nicht zu folgen. Er glaubt u. a. das Periblast später zum Mesoblast rechnen zu dürfen, indem er erst den Boden des hypoblastischen Darmrohres daraus entstehen lässt. Abgesehen von diesem Widerspruch, finde ich mich aus den oben gesagten Gründen nicht veranlasst, irgend welche Theilnahme des Periblasts an der Bildung des Embryo (welche auch zur Zeit durch keine tüchtigen objectiven Beobachtungen erwiesen ist) anzunehmen.

Erklärung der Abbildungen auf Tafel XVI und XVII.

Au. Augenblasen. m. D. medianes Dottergefäss.
W. z. Wanderzellen.

Fig. 1. Fragment aus dem Rande des Blastoderms eines 36 Stunden alten Beloneembryo. Die Kerne der Randzellen sind spindelförmig und stehen im Begriff sich zu theilen.

Fig. 2. Dasselbe Fragment als Fig. 1, 25 Minuten später. Die Kerne haben sich getheilt; die Kernteilungsprodukte sind wieder sichtbar geworden. Die Zellgrenzen der Randzellen sind weiter mit dem Periblaste verschmolzen.

Fig. 3. Ein ähnlicher Theil eines etwas älteren Embryo (88 Stunden) von Belone. Auch hier sind die Kerne spindelförmig gestreckt, welche sich in

Fig. 4. getheilt haben. (Ebenfalls 20—25 Minuten später.) Auch hier sind die äusseren Zellgrenzen zum Theil verschwunden.

Fig. 5. Polygonale Structur des auf Seite 223 sub 1 beschriebenen pelagischen Eies. a) von oben gesehen; b) von der Seite gesehen.

Fig. 6. Vertikaler Schnitt durch das Seite 223 sub 2 beschriebene pelagische Ei. Die in dem Randwulst gelegenen Kerne sind aus den Randzellen getreten und theilen sich noch einige Male. Die auf dem Boden der Furchungshöhle gelagerten Zellen stammen von den Blastodermzellen.

Fig. 7. Belone-Embryo (5½ Tage alt) von unten gesehen.
Fig. 7 a. Dasselbe: Das Herz in optischem Durchschnitt.
Fig. 7 b. Dasselbe wie 7 a, 4 Stunden später.

Fig. 8. Belone-Embryo (6½ Tage alt). Von oben gesehen. Das Herz schimmert durch. Viele Wanderzellen fangen an aus dem Embryonalsaum zu treten.

Fig. 8 a. Das Herz von demselben Embryo von unten gesehen.
Fig. 8 b. Das Herz von demselben Embryo in optischem Durchschnitt.
Fig. 9. Belone-Embryo (7 Tage alt) von oben gesehen.
Fig. 9 a. Das Herz von unten gesehen.
Fig. 9 b. Dasselbe in optischem Durchschnitt.
Fig. 10. Belone-Embryo (8½ Tage alt) von unten gesehen. Die punktierte Linie deutet den Umriß des Herzens in Systole an.

Fig. 10 a. Das Herz desselben Embryo von der linken Seite gesehen.

Fig. 11. Belone-Embryo (9½ Tage alt) von oben gesehen.

Fig. 11 a. Das Herz dieses Embryo von der linken Seite.

Fig. 12. Belone-Embryo (12 Tage alt) von oben gesehen. Auftreten der Dottergefäße.

Fig. 13. Belone-Embryo (13½ Tage alt) von oben gesehen. Die Dottervenen sind geschlossen. Anfang der Sprossenbildung. An den Gefäßen im Embryo schliesst sich das in

Fig. 13 a. abgebildete Herz mit den Hauptarterien bei a. a. an.

Fig. 13 b. Einige der Pigmentzellen, welche auf den Boden des Sinus venosus gelagert sind.

Fig. 13 c. Derselbe Embryo, von der linken Seite gesehen. Woher das Gefäss I stammte, konnte ich nicht genau ermitteln.

Fig. 14. Belone-Embryo (16 Tage alt) im Ei. Auftreten der Extremitäten (Ex.).

Fig. 15. Die Bildung der Schlinge in dem Schwanz eines 16 Tage alten Belone-Embryo und ihre Beziehung zum medianen Dottergefäss. (Vgl. Fig. 13 c.) S. S. Schlinge.

Fig. 16. Das ganz vor dem Kopfe gelegene Herz eines 20 Tage alten Belone-Embryo. Von oben gesehen.

Fig. 17. Gobius-Embryo. Kurz vor dem Ausschlüpfen. Verhalten des Herzens zum Dotter und Embryo.

Fig. 18. Embryo von Gobius niger. Kurz vor dem Ausschlüpfen. Von der linken Seite gesehen.

Fig. 19. Eben ausgeschlüpftes pelagisches Embryo mit glashellem Dotter (1½ mm), von unten gesehen.

Fig. 20. I. II. III. IV. Schemata, die Beziehung des Herzens von Belone zum Embryo und Dotter, in verschiedenen auf einander folgenden Stadien.

Fig. 21. Schematisirte Darstellung der Bildung der Haupt-Dottergefäße. Optischer Durchschnitt eines frischen Eies; Periblast deswegen nicht schärfer gesondert. a) Es besteht nur eine mit wenigen Zellen besetzte Rinne im Dotter. b) Diese Rinne hat eine eigene Wand bekommen, welche sich vom Hornblatte ablöst.

Fig. 22. Fragment aus dem Rande des Embryonalsaumes des in Fig. 9 abgebildeten Belone-Embryo. W. z. Wanderzellen.

Fig. 23. Querschnitt durch einen ungefähr 16 Tage alten Embryo von Belone acus. i. Z. intermediäre Zellenmasse. m. S. mesoblastische Somiten. M. R. Medullarrohr. Ch. Chorda. U. Urmierengang.

Fig. 24. Skizze nach einem 4 Tage alten Seite 228 sub 2 beschriebenen Embryo. Bildung kleinerer Blutgefäße.
Zur Morphologie wandernder Leukocyten.

Von

Dr. Joseph Heinrich List in Graz.

Hierzu Tafel XVIII.

Ich habe schon gelegentlich 1) erwähnt, welcher eigentümliche Formen die normaler Weise durch Epithelien wandernden Leukocyten zeigen, und in nachfolgenden Blättern erlaube ich mir einen weiteren Beitrag zur Kenntniss dieser interessanten Formen zu liefern.

Als ich in den vergangenen Sommerferien das Cloakenepithel von Raja miraletus an Isolationspräparaten aus Müller'scher Flüssigkeit genauer untersuchte, fand ich auf zahlreichen Epithelzellen oft eigentümlich gewundene, bizarre Gebilde, die sich bei Untersuchung an tingirten Schnitten als Leukocyten darstellten 2).

Mein Material war zum Theil in Müller'scher Flüssigkeit,

2) In meinen „Untersuchungen über das Cloakenepithel der Plagiostomen, I. Th. Das Cloakenepithel der Rochen“, Sitzungsberichte der Wiener Academie, Abth. III, Bd. XCI, 1885, habe ich auf Taf. IV, Fig. 3 u. 4 tingirte Schnitte abgebildet, auf welchen nur die Leukocytenkerne zu sehen sind. In Fig. 6 g derselben Tafel finden sich auf einer Epithelzelle zwei Leukocyten gezeichnet.
zum Theil in 1/4 % Chromsäure gehärtet worden, und muss ich mich auf die Beschreibung der aus diesen Reagentien stammenden Präparate beschränken, da mir frische Objecte zur Zeit nicht zugänglich waren 1).

Beobachtet man in Müller’scher Flüssigkeit isolirte Epithelzellen (Fig. 1 bis Fig. 13, Fig. 46, 47), so bemerkt man auf den selben häufig eigen tümliche, stark lichtbrechende, homogen oder auch schwach granulirt erscheinende Gebilde (L), welche stets eine Anzahl grösserer und kleinerer Vacuolen besitzen. Die Form derselben ist so überaus man nigmäßig, dass es sehr schwer ist, eine erschöpfende Beschreibung zu geben.

Beobachtet man dieselben im isolirten Zustande, wie sie in jedem Präparate zu finden sind (Fig. 14 bis Fig. 39), so erscheinen sie in der Regel von einem glatten Contour begrenzt, der nur dann etwas rauh erscheint, wenn der Zellkörper deutliche Granulation zeigt. Derselbe ist nun ent weder lang gestreckt, fadenartig, dann wieder an einer der beiden Seiten kolbenförmig angeschwollen (Fig. 15, 16, 25, 30), oder er ist an beiden Enden fadenförmig verdünnt und in der Mitte angeschwollen (Fig. 19). Auch bisquit- und nagelförmige Formen sind häufig anzutreffen (Fig. 24, 32), ebenso wie rundlich oder oval begrenzte Zellkörper.

Beobachtet man isolirte Epithelzellen, so kann man nicht selten beobachten, dass die Zellsubstanz der Leukocyten ringförmig dem Kern umgibt, und dass der Leukocytenkörper wie eine verschmolzene ringförmige Masse auf der Epithelzelle haftet (Fig. 5, Fig. 11). Offenbar ist hier eine Verschmelzung der beiden Enden des Leukocytenkörpers eingetreten, und eine seichte Einbuchtung lässt noch manchmal die Verschmelzungsstellen erkennen (Fig. 11).

An den meisten in Müller’scher Flüssigkeit isolirten For-

1) Der grösste Theil dieser Arbeit war bereits in den vergangenen Sommerferien fertig gestellt worden.
men lässt sich nun innerhalb der Zellsubstanz kein Kern nachweisen. Der Leukocyt erscheint überall gleich stark lichtbrechend. Ja selbst nach Tination mit salpetersaurem Rosanilin gelang es mir nur in den wenigsten Fällen, deutliche Kerne nachzuweisen\(^1\). Hier und da gelingt es aber doch an isolirten Formen distincte Nuclei zu beobachten (Fig. 14, 22, 25, 31 K\(\text{f}\)). Man kann deren nur einen, manchmal aber auch deren zwei beobachten, welche oft gestreckt sind und den Eindruck machen, als seien sie in Folge der Streckung des Leukocytenkörpers aus einem Nucleus hervorgegangen.

Dass man es nun thatsächlich mit zwischen den Epithelzellen wandernden Leukocyten zu thun hat, lehren tingirte Schnittpräparate ans in Chromsäure gehärteten Objecten. Man kann deshalb Leukocyten finden, deren Zellsubstanz mehr rundlich oder polygonal auch hie und da gezackt erscheint (Fig. 41—43), deren Kerne aber nach Tination scharf hervortreten, verschiedene Form zeigen und deutlich die Spuren von Chromatinbalken, die bei schwächerer Vergrösserung wie grobe Granula erscheinen, erkennen lassen. Sehr häufig zeigen aber die Kerne jene verschiedenen lang gestreckten oder hantelartigen Formen, wie ich sie l. e. aus dem Epithel der Oberhaut der Barteln und der Oberlippe von Cobitis fossilis beschrieben habe.

Die Zellsubstanz der Leukocyten erscheint sehr schwach tingirt und ist an in Canadabalsam aufgestellten Präparaten nur schwer zu erkennen. Manchmal erscheint dieselbe an Schnittpräparaten wie ein schwanzartiger Anhang des Kernes (Fig. 45). Beobachtet man nun Schnitte genauer, so kann man häufig Ausbuchtungen zwischen den Epithelzellen beobachten (II Fig. 50), welche zweifellos von Leukocyten herrühren und welche auch von Stöhr\(^2\) und mir\(^3\) aus anderen Epithelien beschrieben worden. In solchen Ausbuchtungen kann man oft mehrere Leukocyten liegen sehen. Es ist mir wahrscheinlich, dass diese Ausbuchtungen

\(^1\) Ich versuchte auch durch Zusatz von Essigsäure zu den mit Müller'scher Flüssigkeit isolirten Leukocyten die Kerne derselben leichter sichtbar zu machen, allein ich erzielte keinen nennenswerthen Erfolg damit.

\(^2\) Ph. Stöhr, Uber Mandeln und Balgdrüsen. Virchow's Archiv, Bd. XCVII, 1884.

\(^3\) l. e.
zwischen den Epithelzellen nicht allein dem Drucke der wandernden Leukocyten, sondern wohl hauptsächlich der resorbirenden Thätigkeit derselben ihre Entstehung verdanken.

Diese Ausbuchtungen kann man übrigens auch an zahlreichen isolirten Epithelzellen beobachten (Fig. 1, 48, H).

Die Leukocyten haften sehr fest an den Epithelzellen, und es gelingt mit der Präparirnadel nur sehr schwer, sie zur Trennung zu bringen. An den Epithelzellen kann man nach der Trennung noch häufig die Spuren der auf sie gelegenen Leukocyten bemerken. Wie fest die letzteren auf den Epithelzellen haften, kann man an isolirten Leukocyten beobachten, an welchen man noch häufig Theile der Zellsubstanz der Epithelzellen bemerken kann, welche bei der Trennung mitgerissen worden (Fig. 40 Zs). Diese Zellsubstanzeile der Epithelzellen erscheinen an Präparaten aus Müller'scher Flüssigkeit granulirt und können bei flüchtiger Betrachtung den Zellkörper des Leukocyten vortäuschen, während letzterer selbst, namentlich, wenn er rundliche Form zeigt, als Nucleus desselben erscheinen könnte. Ich war anfangs selbst dieser Täuschung hingeben, bis es mir gelang, in dem höchst bizarre Form zeigenden Leukocytenkörper Kerne nachzuweisen.

Wie die Form der wandernden Leukocyten ausserordentlich mannigfaltig ist und wohl als eine Folge des Widerstandes von Seite der Epithelzellen angesehen werden muss 1), so variirt auch die Grösse derselben bedeutend. Ich konnte an Isolationspräparaten langgestreckte Leukocyten zwischen den Epithelzellen liegen sehen, die sich durch ein paar Epithelschichten hindurchzogen und eine Länge von 100 μ erreichten (Fig. 51).

1) Dass die Leukocyten bei der Wanderung jene Stellen passiren, welche den geringsten Widerstand entgegensetzen, kann man daraus ersehen, dass man niemals Leukocyten auf den Kernen der Epithelzellen beobachten kann.

Zur Morphologie wandernder Leukocyten.

An zahlreichen Epithelzellen kann man kleine, rundlich begrenzte Gebilde beobachten (Fig. 9, 10, 39, 46 b), welche in ihrem Lichtbrechungsvermögen mit den Leukocytenkörpern übereinstimmen. Da ich diese kleinen Gebilde gewöhnlich nur an den Zellen der oberen Schichten des Epithels fand, so erweckte dies mir den Gedanken, ob es sich hierbei nicht um einen Untergang der durch das Epithel wandernden Leukocyten handele, der einfach dadurch zu Stande gekommen, dass der Leukocytenkörper in kleine Theile zerfiel. Es ist übrigens auch möglich, dass die letzteren nur durch das Reagens hervorgerufene Kunstprodukte sind.

Immerhin wird man aber bei Erwägung der Frage über die Bedeutung der normalen Weise durch Epithelien wandernden Leukocyten, wenn dieselben nicht speziell Träger des Pigmentes sind, der Vorstellung Raum gönnen können, ob die Leukocyten nicht schon im Epithel, oder erst nach Durchwanderung desselben, ihrem Untergange entgegen gehen.

Nachdem diese Arbeit bereits niedergeschrieben war, gelangte ich in den Besitz eines Stückchens einer in 0,5 % Osmiumsäure gehärteten und in Alkohol conservirten Cloake von Raja miraletus. Trotzdem die Isolation der Epithelzellen nur sehr unvollkommen gelang, so fand ich doch Leukocyten vor, welche einen deutlichen, granulirt erscheinenden Kern und um denselben eine nur sehr schwache Granulation zeigende Zellsubstanz besessen. In Fig. 21 a, b der beigegebenen Tafel habe ich aus Osmiumsäure stammende, isolirte Leukocyten abgebildet.
Erklärung der Abbildungen auf Tafel XVIII.

Sämtliche Figuren beziehen sich auf das Cloakenepithel von Raja miraletus.

Fig. 1—13. Epithelzellen mit daran haftenden Leukocyten. K Kerne der Epithelzellen, L Leukocyten. Aus Müller'scher Flüssigkeit. 600/1.

Fig. 14—39. Isolirte Leukocyten. K Kerne, Zs Zellsubstanz derselben.

Fig. 21a, b aus 0,5 procent. Osmiumsäure; die übrigen aus Müller'scher Flüssigkeit. 600/1.

Fig. 40. Leukocyt I. mit daran haftenden Theilen (Zs₁) der Epithelzellen.

Aus Müller'scher Flüssigkeit. 600/1.

Fig. 41. Leukocyt aus einem Schnitt durch das Epithel. K₁ Kern, Zs Zellsubstanz der Leukocyten. Härting in 1/₄ procent. Chromsäure, Doppeltinction mit Hämatoxylin = Glycerin — Eosin. 600/1.

Fig. 42—45. Leukocyten aus Schnitten durch das Epithel. Härting in 1/₄ procent. Chromsäure; Fig. 42—44 Doppeltinction mit Hämatoxylin = Glycerin — Eosin, Fig. 45 Tinction mit salpetersaurem Rosanilin. 600/1.

Fig. 46—47. Epithelzellen mit Leukocyten. Aus Müller'scher Flüssigkeit, Tinction mit salpetersaurem Rosanilin. 600/1.

Fig. 48. Epithelzelle der untersten Schichte mit einer von Leukocyten herrührenden Aushöhlung II. Aus Müller'scher Flüssigkeit. 600/1.

Fig. 49—50. Aus Schnitten durch das Epithel. II Aushöhlung zwischen den Epithelzellen, K₁ Kerne der Leukocyten. Härting in 1/₄ procent. Chromsäure, Doppeltinction mit Hämatoxylin = Glycerin — Eosin. 600/1.

Fig. 51. Epithelzellen der untersten und mittleren Lage mit einem Leukocyten; aus einem Isolationspräparate aus Müller'scher Flüssigkeit. Tinction mit salpetersaurem Rosanilin. 600/1.
S. Lothringer: Unters. an der Hypophyse einiger Säugethiere. 257

(Aus dem anatomischen Institut der Thierarzneischule zu Bern.)

Untersuchungen an der Hypophyse einiger Säugethiere und des Menschen.

Von

Salomon Lothringer aus Bohrka (Oesterreich).

Hierzu Tafel XIX und XX.

Einleitung.

Die nachfolgenden Untersuchungen über den Bau der Hypophyse wurden der Hauptsache nach an frischen und erhärteten Organen einiger Säugethiere angestellt. Es erschien dies zweckmäßig, nachdem es sich gezeigt hatte, dass am Hirnanhange des Menschen, der ja unter gewöhnlichen Verhältnissen nicht unmittelbar nach dem Tode zur Bearbeitung gelangt, manche Einzelheiten der Structur nicht mit gleicher Klarheit zur Anschauung kommen.

Es ist nöthig den mikroskopischen Untersuchungen einige Worte über die Topographie und die äussere Form der Hypophyse bei den Säugethieren voranzuschicken, weil hier wesentliche Verschiedenheiten gegenüber den bei der menschlichen Hypophyse bestehenden Anordnungen zu berücksichtigen sind.

Betrachten wir den Sagittalschnitt des menschlichen Kopfes, so sehen wir die Hypophyse so in der Sella turcica gelegen, dass sie sich nach vorn und unten hin dem tuber cinereum anschliesst. Die in das tuber cinereum sich fortsetzende Höhlung des Zwischenhirnes ist gleichfalls, soweit sie dem Stiele der Hypophyse angehört, nach vorn und unten gerichtet. Allerdings da wo dieser
Stiel zum Hinterlappen der Hypophyse anschwillt, bildet sich ein rückwärts gewendeter Höcker als Hirntheil der Hypophyse 1).

Die Form der Hypophyse ist bei verschiedenen Thieren eine ungleiche. Bald erscheint sie lang gestreckt, konisch (Schwein, Kaninchen), bald linsenförmig abgeplattet (Pferd, Rind). Die Mitte zwischen beiden obigen Formen hält die Hypophyse des Affen, sowie die der Katze und des Hundes, von welchen die

2) Dasselbe gilt von der Hypophyse anderer der von uns untersuchten Säugethiere: Löwe, Bär, Fuchs, Katze, Rind.
Unters. an der Hypophyse einiger Säugethiere und des Menschen. 259

Sehr charakteristisch und für die Beurtheilung unserer Befunde nicht ohne Bedeutung ist die Farbe der Hypophyse. Schon Luschka1) macht darauf aufmerksam, dass die Färbung der Hypophyse an verschiedenen Stellen eine ungleiche sei, indem gewisse Stellen ein dunkleres Roth aufweisen. Er schreibt diese Verschiedenheit der Färbung einem ungleichen Blutgehalt verschiedener Stellen zu1). Die genanere Untersuchung zeigt indessen, dass diese Ungleichheit der Färbung höchst wahrscheinlich der Existenz eines Farbstoffes zuzuschreiben ist. Es verschwindet die betreffende Pigmentirung auch dann nicht, wenn durch längeres Einlegen in Wasser die gesammte Umgebung des Organes blutleer gemacht worden ist. Spuren der Pigmentirung sind selbst nach Monate langem Liegen des vorher in Wasser extrahirten Organes vom Pferde in Weingeist oder Glycerin deutlich sichtbar, während die mit Pia bedeckte Gehirnoberfläche selbst vollständig gebleicht ist. Die unten folgenden speziellen Beschreibungen der Hypophyse des Pferdes, des Schweines und des Menschen geben einige Einzel-

heiten über die Vertheilung der pigmentirten Stellen bei diesen Arten.

Schliesslich seien noch zwei Punkte zu erwähnen. Die Herausnahme der Hypophyse am frischen Kopfe gelingt nicht immer leicht auch bei den Thieren, welche nicht wie der Mensch ein von nur einer kleinen Oeffnung durchbohrtes Operculum besitzen. Zum Theil hängt dies von der Befestigung der Hypophyse am Schädelgründe durch die von hier aus in sie eindringenden Blutgefäss ab. Am Vorteilhaftesten hat es sich uns erwiesen, wo dies die Verhältnisse gestatteten das Gehirn mitsamt der Dura mater vom Schädelgründe zu lösen. Wo dies nicht angeht, verfährt man sehr zweckmässig so, dass man bei der am passendsten von hinten erfolgenden Ausschäulung des Gehirnes aus der Schädelhöhle,
wenn man zur Sella turcica gelangt ist, diese mit einem Meisel-
enschlage abträgt, wonach die intakte Lösung des Hirnanhanges
leicht gelingt. Will man allerdings nur auf die histologischen
Untersuchungen Rücksicht nehm en, so ist es vorteilhaft, das Ge-
hirn ohne Rücksicht auf die Hypophyse mit Durchschneiden des
Stieles zu entfernen.

Einige Beobachtungen haben uns ferner eine noch der Be-
stätigung bedürfende Vermuthung nahe gelegt, dass nämlich die
vorausgegangene Eröffnung der Schädelhöhle beim lebenden Thier
auf die Beschaffenheit der Hypophyse von Einfluss sein könne.
Wiederholt ist uns aufgefallen, dass bei vom physiologischen In-
stitut der Hochschule uns überlassenen Thieren, an welchen die
Trepanation zum Zwecke von Gehirnexperimenten vorangegangen
war, die Hypophyse auffällig gross erschien, vielleicht in Folge
vermehrter Blutfülle, nachdem die Druckverhältnisse in der Um-
gebung durch die Eröffnung der Schädelhöhle verändert worden
waren.

Untersuchungsmaterial und Methoden.

Das Material zu unseren Untersuchungen wurde möglichst
frisch aus der Schädelhöhle der verfügbaren Thiere entnommen.
Vom Menschen standen uns zu Gebote einige frische Hypophysen
Erwachsener, die wir durch die Freundlichkeit von Herrn Professor
Langhans ca. 7 Stunden nach dem Tode erhalten konnten, ferner
die eines Kindes, welche durch freundliche Erlaubniss von Herrn
Dr. Lorcy in Frankfurt am Main 5 Stunden nach dem Tode zur
Conservirung gelangte. Von Hunden, Katzen und Kaninchen stand
uns ziemlich reichliches Material zu Gebote. Von grossen Säugethieren untersuchten wir die Hypophyse des Pferdes und des Rin-
des. Am besten zugängliches Material bot uns die Hypophyse des
Schweines, nächstdem wurde die des Hundes, der Katze und des
Kaninchens, endlich in je einem Exemplare die des Fuchses und
die eines Affen (Hapalemur) benutzt. Die Methoden der Unter-
suchungen waren die gewöhnlichen. Die Präparate wurden zumeist
in Müller'scher Flüssigkeit, ausserdem einzelne in Kleinen-
berg'scher Lösung, in Alcohol, Salpetersäure und Osmiumessig-
säure erhärtet. Frische Präparate vom Schwein wurden mit dem
Gefriermikrotom geschnitten.
Schwierigkeiten bot die Här tung zur Anfertigung zu Serienschnitten. Die Consistenz der Hypophyse ist bei verschiedenen Thieren eine verschiedene. Die des Pferdes und des Schweines ist eine gleichmässigere und festere als die der an weiten Blutgefässen ungeheuer reichen Hypophyse der Carnivoren.

gute Resultate lieferten. Zum raschen Nachweise der Existenz eigenthümlicher chromophiler Zellen erwies sich die erste, zur Gewinnung eleganter Bilder die zweite Methode am vortheilhaftesten.

Hypophyse des Hundes.

Zum Erlangen des Uebersichtsbildes über den Bau der Hypophyse des Hundes benutzt man am besten Schnitte, die annähernd in frontaler Richtung geführt sind. Dieselben treffen im günstigsten Fall die ganz Länge des Hirnteiles, kelchartig umschlossen vom Epithelialteil. Der Gehirnteil, etwa in einer Höhe von 2 mm über der Hypophyse abgetragen, verjüngt sich im Schnittbild und schwilt innerhalb der Hypophyse wiederum mächtig an, so dass das ganze Durchschnittsbild sanduhrförmig erscheint (vgl. Tafel XX, Fig. 7).

Der Epithelialteil umfasst die untere Anschwellung, wie erwähnt, kelchartig, am mikroskopischen Durchschnitt in der Nähe des dem Hirnteile zu gekühlten Randes des Kelches ca. 1,5—2 mm dick, am Boden auf etwas weniger als 1 mm verjüngt. An Präparaten, welche mittelst der Weigert'schen Hämostoxylinintination behandelt worden sind, erscheint der Epithelialteil dunkler als der Hirnteil. Ein spaltförmiger Zwischenraum scheint beide Abschnitte zu scheiden. Genauere Betrachtung zeigt indessen, dass der Spalt nicht die Grenze zwischen Epithelial- und Hirn-Theil markirt, dass vielmehr ein ganz dünner nur aus wenigen Zellschichten gebildeter Epithelialsaum ventral dem Hirnteile anliegt. Da wo der Stiel sich zum tuber cinereum erweitert, also vor und über dem eingeschnürten Theile der Sanduhr, hängt dieser Epithelialsaum mit dem Körper des Hypophysenbechers zusammen, so dass hier die trennende Höhle abgeschlossen erscheint. Diese Um schlagstelle bildet übrigens nicht die eigentliche Grenze des Epithelialtheils, vielmehr setzt sich eine dünne Schicht desselben noch mehr weniger weit auf den Stiel der Hypophyse fort.

Messungen an einem solchen Schnitt ergeben an dem einem ziemlich grossen Hund entnommenen Organ folgende Werthe, deren Genauigkeit wegen des Schrumpfens des Präparates beim Erhärtten nur eine relative ist. Bei einer Höhe des Schnittes von etwa 5 mm, wovon etwa 1,5 mm auf den Stiel kommen, betrug dessen grösste Breite 5,55 mm, die vom Epithelialteil umschlossene An-
S. Lothringer:

Schwellung des Hirnteiles 3,2 mm, die schmalste Stelle des Hirnteiles 1,1 mm. Der Epithelialteil maass entsprechend der grössten Breite jederseits 0,08 mm, verdickte sich jedoch bis auf 1,1 mm. Der auf dem Hirnteile haftende Epithelsaum ist 0,1 mm dick. Selbstverständlich gestaltet sich das beschriebene Bild verschieden je nach der Schnittrichtung. Schnitte, senkrecht zur Richtung der vorigen geführt, zeigen den Hirnteil hufeisenförmig oder ringförmig vom Epithelialteil umgeben, je nach der Höhe und Lage der Schnittrichtung. — Wo wir das beschriebene Bild der Ein senkung des Hirnteiles in den doppelschichtigen Epithelialteil sehen, lässt sich die Anordnung des letzteren mit jener der secundären Augenblase vergleichen, nur mit dem Unterschiede, dass die Concavität des Bechers an der Epithelschicht zu sehen ist.

Auffällig ist noch am Epithel der Schläuche ein Bild, welches nur an besonders günstigen Stellen klar zur Anschauung kommt. Es zeigen sich nämlich unmittelbar unter den zylindrischen, die Schläuche begrenzenden Zellen zuweilen zwischen sich eindringend, grössere, bei Carmintinctio ungefärbte Zellen, welche durch ihr homogenes Aussehen inmitten der granulirten Epithelien an Becherzellen erinnern.
Einen gelegentlichen Befund in dem Inhalte der Schlüche bilden neben den körnigen Materialien und erwähnten Zellen schmale Streifen einer stark lichtbrechenden Substanz, welche durch Indigo intensiv gefärbt wird. Sie erscheinen als eckige Stäbchen, manchmal halbmondförmig gebogen, an Carminpräparaten farblos, in polarisirten Lichte ohne Doppelbrefchung. Die optischen Eigenschaften und die Farbenreaction geben ihnen eine unverkennbare Beziehung zu geschichteten, runden oder mit buckligen Auftreibungen versehenen Massen, deren vereinzeltes Vorkommen im Gewebe der Hypophyse bekannt ist, wo sie als Colloidmassen bezeichnet werden. An einigen Präparaten gestaltete sich das Auftreten der letzteren eigenthümlich in der Weise, dass ein Kern des granulirten Inhaltsmateriales von einem Saume geschichteter colloider Substanz, dann einer zweiten Lage der granulirten Masse und neuer colloider Substanz umgeben war (Taf. XX, Fig. 12).

1) Messungen an 10 Cysten ergaben:

| Länge | 70, 50, 50, 30, 22, 15, 17, 35, 32, 63. |
| Breite | 45, 30, 30, 22, 20, 15, 12, 22, 22, 50. |
Ueber das Gewebe des Hirntheiles haben wir speciellere Untersuchungen nicht angestellt. Nach der Beschaffenheit desselben an den Präparaten war die angewendete Behandlungsmethode für ein Studium der complicirten, hier vorliegenden Verhältnisse nicht son-

in die Tiefe, etwa eben so weit nach abwärts als diese selbst. Das von ihr bedeckte, an Rundzellen reiche Gewebe des Tuber einereum geht allmählich in die Faserung des Trichterlappens auf, indem die wesentlich der Längsrichtung des Trichterlappens folgenden Faserzüge an Menge zu-, die nervösen Elemente abnehmen. Die Gefässe des Infundibularlappens bilden ein Netz mit grossen Zwischenräumen, dessen Stämme wesentlich central, dessen Verzweigungen peripher gelegen sind. Die

Da die vorstehenden Befunde an der Hypophyse des Hundes als Ausgangspunkt für die weitere Beschreibung dienen wird, so mag es gestattet sein, hier kurz zusammenzufassen, was für die weitere Beschreibung Verwertung finden soll. — Uebereinstimmend mit Peremeschko hat wir gefunden, dass die Hypophyse aus einem Hirntheile (Infundibularlappen, Trichterlappen) und einem Epithelialtheile besteht, deren jeder eine besondere Höhe enthält. Wir unterscheiden eine Infundibular- und eine Hypophysenhöhle. Erstere ist die direkte Fortsetzung der 3. Hirnhöhle, letztere ist eine wahrscheinlich auf die im embryonalen Leben bestehende Anstülpung der Mundbucht zurückzuführende selbständige Spalte. — Die Unterscheidung eines Körpers (Peremeschko’s Korkschicht), Umschlagtheiles und Epithelsaumes (Peremeschko’s Markschicht) werden wir auch da behalten, wo die dem Epithelsaum des Hundes entsprechenden Theile der Hypophysensubstanz complicirtene Gestaltungen angenommen haben. In den Schläuchen der Hypophysensubstanz erkennen wir wenigstens im Umschlagtheile sicher Ab—

zweigungen der Hypophysenhöhle. In wie weit diese nach ihrer paarig symmetrischen Anordnung eine Stütze für die von Dohrn1) versuchte Ableitung der Hypophyse von Kiemenspalten abgeben konnten, müssen wir hier dahingestellt sein lassen.

Hypophyse der Katze.

Die Verhältnisse der Hypophyse der Katze entsprechen im Allgemeinen den beim Hunde gefundenen, d. h. auch hier ist der Hirntheil der Hypophyse in den Epithelialtheil eingestülpt, welcher aus zwei Schichten, dem Epithelsaum und Hypophysenkörper, besteht. Relativ stärker ausgebildet als beim Hunde ist der Epithelsaum; dagegen ist der Umschlagtheil weit weniger entwickelt. Auf einer nicht unerheblichen Strecke bildet er sogar nur ein äusserst dünnnes Zellenstratum, welches noch leichter als beim Hunde einreisst (Taf. XX, Fig. 9). Die Folge ist, dass man noch häufiger als dort den Körper vom Hirntheil abgetrennt findet.

Die Verzweigungen der Hypophysenspalte, welche beim Hunde in den Umschlagtheil vorspringen, sind bei der Katze auf eine nur an wenigen Schnitten einer Serie sichtbare Andeutung einer gabeligen Theilung reduirt. Relativ stärker ausgebildet als beim Hunde ist der Epithelkörper insofern, als er den Hirntheil an (frontalen) Querschnitten auf eine grössere Strecke als dort vollständig umfasst.

Die mikroskopische Untersuchung anbelangend haben wir zunächst zu constatiren, dass auch hier der Epithelialtheil an mit Weigert'scher Hämatoxylinlösung behandelten Präparaten durch dunkle, fast schwarze Färbung sich auszeichnet. Wie beim Hunde

ist dies auf die Anwesenheit chromophiler Zellen zurückzuführen. Dieselben finden sich am reichlichsten in den Seitenlappen des Epithelialtheiles, oft dermaassen zusammengedrängt, dass sie allein dessen Masse zu bilden scheinen. Untersuchung bei starker Vergrösserung zeigt in der That ganze Schläuche, beziehungsweise Ketten ausschliesslich dieser Form angehöरig.

Die Vascularisation ist auch hier eine sehr reichliche, nur ist die Gefässentwicklung nicht so mächtig wie beim Hunde. Es wäre allerdings möglich, dass hier individuelle Verschiedenheiten obwalten.

Der Hirntheil zeigt im Allgemeinen dieselben Structurverhältnisse, wie wir sie bei dem Hunde constatirt haben.

Hypophyse des Pferdes.

Die Präparate von der Hypophyse des Pferdes, die wir untersucht haben, entstammen meist älteren Thieren. Die makroskopisch-anatomische Beschreibung ist nach ganz frischen Präparaten aufgenommen.

Die Hypophyse des Pferdes hat die Form einer Kastanie, welche die Spitze nach hinten kehrt. Die grösste Breite misst 25, die grösste Länge 21, die grösste Dicke ca. 8 mm. Die untere Fläche hängt fest mit der Dura zusammen. Am Rande wird dieser

An Flachschnitten des Organes, wie wir sie meistens benützen, ist das Bild je nach der Höhe, in welcher der Schnitt geführt ist, ein etwas verschiedenes. Stets, gleichviel nach welcher Methode die Schnitte behandelt sind, ist sehr deutlich ein Gegensatz zwischen der medianen, dem Hirntheile angehörrigen, und der lateralen Epithelialregion. Eine Hypophysenspalte haben wir an unseren Schnitten, trotzdem wir eine grosse Zahl theils selbst gefertigter, theils von Prof. Fleisch uns zur Verfügung gestellter Präparate untersucht haben, nicht finden können. Gleichwohl lässt sich die Abgrenzung eines epithelialen Körpers und Saumes in sehr distinkter Weise vornehmen. Es ist nämlich auch hier wieder die eine der von uns wiederholt erwähnten Zellformen, welche sich durch Tinctionsfähigkeit für Osmiumsäure u. s. w. auszeichnet, im Epithelkörper so sehr angehäuft, dass dessen Färbung bei Anwendung geeigneter Reagentien wesentlich dunkler erscheint, als jene des von solchen Zellen freien Gebietes (Taf. XIX, Fig. 2). Schon das blosse Auge erkennt nun, leichter an gefärbten als an ungefärbten Präparaten, aber auch bei letzteren deutlich, die Existenz einer schmalen, sich dem Hirntheile anschliessenden Zone, die gegen diesen und den Epithelkörper gleich scharf abgegrenzt, durch ihre Färbung sich von beiden unterscheidet. Sie entspricht dem Epithelsaum des Hundes. Gleich diesem entbehrt sie der chromophilen Zellen, gleich diesem enthält sie Cysten, deren Inhalt in höchst auffälliger Weise in seinem Tinctionsvermögen mit den
Unters. an der Hypophyse einiger Säugethiere und des Menschen. 273
grossen Zellen übereinstimmt. Alle Farben, welche jene Zellen in specifischer Weise tingiren — Eosin, Hämatoxylin, Indigo und Osmiumsäure — zeigen die gleiche Prädilection für den Inhalt jener Cysten, so dass man versucht wird, auf eine Beziehung zwischen beiden zu schliessen. In manchen Präparaten sind dieselben sehr reichlich vorhanden, auch haben sie manchmal eine recht beträchtliche Grösse, so dass sie schon mit blossem Auge als kleinste Pünktchen kenntlich sind.

Bei einer Gesammtbreite der Schnitte grösserer Präparate von 20 mm kommen auf den Hirntheil 3, auf das dem Epithelsaum entsprechende Gebiet jederseits 1—2 mm. Von der Schnittrichtung hängt es ab, ob man den Hirntheil durch die ganze Länge des Schnittes verfolgen kann, oder ob derselbe hufeisenförmig von dem Epitheltheil umschlossen erscheint.

Die mikroskopische Untersuchung des Epithelkörpers zeigt im Gegensatz zum Hunde die Gefässe verhältnissmässig eng, wenngleich dieselben in sehr reicher Verästelung das Organ durchsetzen.

Archiv f. mikrosk. Anatomie. Bd. 28. 19

Bezüglich des Umschlagstheiles sind wir nicht in der Lage, eingehende Mittheilungen zu machen. Aus unseren Präparaten geht hervor, dass, wie bei allen untersuchten Thieren, ein eigenartiges, aus Epithelschläuchen und pialen Gefässeverzweigungen gemischtes Gewebe auf den Hypophysenstiel übergeht. Sehr schön sind in denselben colloide Cysten zu erkennen, die sich gleichfalls in den Ueberzug des Hypophysenstieles verfolgen lassen. Der Epithelsaum gestaltet sich complicirter als bei den kleineren Thieren. Seine Dicke ist eine betrüchtlichere als bei letzteren. Dementsprechend sind die bindegewebigen Septa zahlreicher und scheinen Blutgefäss in der ganzen Ausdehnung des Epithelsaumes vorzukommen. Durch die Septa werden die epithelialen Elemente des Epithelsaumes in follikelartige Gruppen geschieden. Mehr weniger deutlich tritt an einzelnen Stellen eine Anordnung der Epithelien zu radiär gestellten Schläuchen hervor, namentlich in den von Umschlagstheile entfernteren Gebieten. Viel stärker entwickelt als bei anderen Thieren sind die Colloideysten (Taf. XIX, Fig. 2). Dieselben zeigen eine deutliche Schichtung ihres Inhaltes, so zwar, dass die centralen Schichten gegen Tionitionen resistenter sind oder auch
Unters. an der Hypophyse einiger Säugethiere und des Menschen. 275

Hypophyse des Schweines.

Die Hypophyse des Schweines ist abgeplattet, elliptisch. Die Länge des Stieles beträgt ca. 2 mm, die grösste Breite 11 mm, der sagittale Durchmesser 10 mm, die Dicke 6,5 mm. Die Lage ergiebt sich aus dem in der Einleitung Gesagten. Wir haben eine ventrale und eine dorsale Fläche zu unterscheiden. Erstere ist der Hauptsache nach vom Epitheltheil, die andere vom Hirntheile gebildet. Letzterer überragt nach rückwärts den Epitheltheil kolbig verdickt und ist hier mit der Dura ziemlich fest verlötet. Die nach oben gekehrte Fläche erscheint platter als die gewölbte nach unten gekehrte. Bei der Betrachtung von oben her erscheint das Organ aus 3 Theilen gebildet: einem unpaaren, mittleren und 2 seitlichen Theilen.

Die Farbe des Hirntheiles ist grau. Seine Oberfläche erhebt sich zu leichten Wülsten. Er misst in der Mitte etwa 3 mm, in der Nähe des hinteren Poles wächst seine Breite auf ca. 4,5 mm. Die Abgrenzung gegen die seitlichen Theile ist keine scharfe, namentlich in der halben Länge des Organs erscheint die Grenzlinie verwaschen, als wenn ein Uebergreifen der Substanz der Seitenlappen über die des Mittellappens stattfinde (was sich in der That durch mikroskopische Untersuchung an Schnitten nachweisen lässt). Die untere Fläche des Organs hängt rückwärts ziemlich fest mit der Dura zusammen, derart, dass eine Lösung ohne Substanzverlust nicht leicht gelingt. An der unteren Fläche ist von der Trennung eines Mittel- und Seitenlappens nichts zu sehen. Die von oben her sichtbaren Seitentheile des Organs gehören ausschliesslich dem Unterlappen, besser dem Epithelialtheil an. Die Färbung des Epithelialtheiles ist eine graurothe, nach vorn erscheinen dunklere, fast rostfarbene Flecken. Diese dunklere Färbung ist auch auf den Stiel des Organs zu verfolgen und findet eine ziemlich scharfe Abgrenzung am Tuber cinereum. Die mikroskopische Untersuchung lässt leichter als beim Pferd, wegen der

Hypophyse des Kaninchens.

An einem unserer Präparate, welches zu einer Schnittserie verwendet wurde, zerfiel der Epithelkörper durch eine schmale, in sagittaler Richtung eindringende Falte in zwei Lappen.

Unters. an der Hypophyse einiger Säugethiere und des Menschen. 279

Der Hirntheil selbst zeigt noch schärfer als beim Hunde die Abgrenzung des cerebralen Gewebes von dem specifischen Gewebe des Trichterlappens. Unterhalb der Enge des Stieles findet sich das letztere allein. Die Infundibularhöhle schloss an einem unserer Präparate (Schnittserie) vollständig über der Enge des Stieles ab, weit über der Stelle, bis zu welcher die Hypophysenspalte hinaufreicht. In einem anderen Präparat fand sich zwar eine Höhlung der Trichterlappens; doch sahen wir hier keine Communicationen.

Hypophyse des Menschen.

Virchow\(^3\) hat erkannt, dass die Substanz des Epithelialtheiles bei älteren Personen gelbliche Flecken zeigt, welche sich aus dem hellgrabraunen Grunde hervorheben. Er führt die ersteren auf Verfettungen zurück. Wichtig ist für uns, dass er damit die

1) Luschka, Der Hirnanhang und die Steissdrüse des Menschen. Berlin 1860. S. 17 und Taf. I, Fig. 2.
2) Luschka, Hirnanhang u. s. f. S. 14. „Als Regel ist es zu betrachten, dass der Trichter „in der Mitte des Ausschnittes am hinteren Rande des vorderen Lappens sich einsenkt. Oft genug kommt es aber auch vor, dass derselbe im Centrum der oberen Fläche der Hypophyse eintritt und so scheinbar ausschliesslich dem vorderen Lappen angehört, während indess verticale Durchschnitte zeigen, dass er die Masse desselben nur durchsetzt, um in die Substanz des hinteren Lappens überzugehen."
Eigenfarbe des Organes im Ganzen richtig beschrieben hat. Der Existenz von Pigmentirungen in der Hypophyse des Menschen gedenkten ferner Langen1) in seiner unter Max Schultz's Leitung entstandenen Dissertation. Eine Beziehung der colloidenen Substanzen zu den Zellen der Hypophyse als solche erkannt hat. Endlich hat Peremeschko2) eine Beschreibung der Hypophysenspalte gegeben, die, wahrscheinlich durch vortheilhafteres als das von uns benutzte Material begünstigt, manche Einzelheiten bringt, die wir nicht in ausgiebiger Weise verfolgen konnten. Kölliker3) hat das Verdienst, die Bedeutung der von ihm in der Hypophyse des Menschen gesehenen Reste der Hypophysenhöhle als solche erkannt und als Ueberbleibsel des foetalen Hypophysenkanales richtig gedeutet zu haben. Wenn wir noch erwähnen, dass die Lehrbücher von Schwalbe4) und Henle5) einige der beim Menschen beobachteten Einzelheiten zum Theil auf Grund eigener Untersuchungen richtig beschreiben, so dürfte das Literaturmaterial über die Hypophyse des Menschen nahezu erschöpft sein.

Die Untersuchung des frischen Präparates hat uns an mehreren Exemplaren eine sehr deutliche gelbbraune Pigmentierung gezeigt, die namentlich in den seitlichen Theilen der oberen Fläche und des vorderen Randes gut zu sehen war und sich nach der Tiefe abnehmend etwa 1,5 mm weit in die graurothe Substanz verfolgen liess. Die mikroskopische Untersuchung an frischen Präparaten hat uns bezüglich der Träger dieses Pigmentes keinen sicheren Aufschluss gegeben. Gelbe, fettartige Tröpfchen in den

1) Th. Langen, De Hypophysi cerebri disquisitiones microscopicae. Dissertatio inauguralis. Bonae 1864. "In spatiosis tela conjunctivae circumfusis partim rotundae partim polygonalescellae sitae sunt. In lobis autem finibus eae majores inveniuntur, magis granulosae sunt et pigmentum continent."

3) Kölliker, Entwicklungsgeschichte des Menschen und der höheren Thiere. II. Aufl. S. 529.

4) Schwalbe, Lehrbuch der Neurologie S. 476.

5) Henle, Nervenlehre. II. Aufl. S. 327.
Zellen waren in einem der Präparate zu sehen, in grösseren Zellen in einem anderen Präparate war nichts davon zu bemerken. Dass auch hier die Ausdehnung der gefärbten Zone dem Verbreitungsgebiete der chromophilen Zellen zu entsprechen scheint, verdient immerhin Erwähnung.

1) Über die Beobachtung der Hypophysenhöhle bei einem mikrocephalen Kinde durch Dr. Hans Virchow sei verwiesen auf: Flesch, Anatomische Untersuchung eines mikrocephalen Knaben. Festschrift zur Feier
Ueber das Verhalten des Umschlagtheiles zum Hirnstiel haben wir spezielle Untersuchungen nicht angestellt. Die citirten Angaben Virchow's, Luschka's und die Beobachtungen von W. Müller 1) zeigen zur Genüge, dass die Verhältnisse nichts Abweichendes von den bei den Thieren gefundenen darbieten.

E r g e b n i s s e.

S. Lothringer:
Unters. an der Hypophyse einiger Säugethiere und des Menschen. 283

hypothetischen, einstmal den Schlundring durchsetzenden Verlängerung des Darmrohres durch das Nervensystem, — für die jetzige Stellung des Organes gewinnen wir aus seiner Structur Anhalte genug, um es aus der Reihe der rudimentären Bildungen zu streichen und ihm eine active Rolle im Organismus zuzuordnen. Hierbei sind wir aber ausschliesslich auf die anatomische Untersuchung angewiesen. Wenigstens ist nicht anzunehmen, dass das Messer des Experimentators oder die Beobachtung des Klinikers in absehbarer Zeit sich mit dem verstecktliegenden Hirnanhange befasen werde. Vielleicht bleibt allerdings der Chemie das letzte Wort vorbehalten. Zwar haben die Versuche, welche auf Ansuchen des Herrn Prof. Flesch von Herrn Prof. v. Neek i angestellt worden sind, bis jetzt weder eigenartige Reactionen, noch charakteristische fermentative Wirkungen auf Amylon oder Eiweiss erkennen lassen, aber die histologische Untersuchung zwingt uns auf Grund der höchst charakteristischen mikrochemischen Reactionen an eine chemische Activity zu denken.

Wenden wir uns zur speciellen Betrachtung unserer Ergebnisse, so muss uns in erster Linie der Nachweis zweier durch differente mikrochemische Reactionen sehr scharf charakterisirten Zellformen beschäftigen. Die Ungleicheit der Hypophysen-Zellen haben wohl alle erkannt, die sich mit diesem Organe beschäftigt haben. Je nach dem Stande der histologischen Forschung hat man derselben grössere oder geringere Aufmerksamkeit geschenkt. Es wird wohl kaum einem Zweifel unterliegen, dass beispielsweise das was Luschka\(^1\) als Mutterzellen beschreibt und abbildet, mit den grösseren „chromophilen“ Zellen identisch ist. Aus der Beschreibung Langen’s\(^2\) geht klar hervor, dass er das Vorwiegen grösserer Zellformen in der Rindenschicht erkannt hat. Dass indessen eine wesentliche chemische Verschiedenheit zwischen beiden Zellformen besteht, findet sich zuerst in einer Mittheilung von Prof. Flesch\(^3\)

1) H. Luschka, Der Hirnanhang und die Steissdrüse des Menschen. Taf. I.
2) Th. Langen, De Hypophysi cerebri u. s. f. S. 17.

An in absolutem Alcohol gehärteten Organe trat eine vermutlich auf Glycogengehalt zurückzuführende Bräunung durch verdünnte Lugol'sche Lösung schneller an den grossen als an den kleinen Zellen auf, betraf aber schliesslich beide in gleichem Maasse. Doppelbruchung konnte weder an frischen, noch an in Alcohol, noch an in Müller'scher Flüssigkeit gehärteten Präparaten trotz sorgfältigster Prüfung constatirt werden. So viel über die chemischen Eigenschaften der chromophilen Zellen:

Die Form derselben zeigt grosse Variationen. Abgeplattete, unter Umständen je nach ihrer Lage spindelförmig erscheinende Zellen auf der einen, kubische und kugelförmige Zellen auf der anderen Seite bilden die Extreme; Zackige, halbmondförmige Formen finden sich je nach der Abhängigkeit vom Drucke benachbarter Zellen. — Eigenartig ist die Lage der Kerne. Die-
selben finden sich oft exzentrisch, zuweilen so vollständig an den Rand der Zelle gedrängt, als ob sie der Ausstossung entgegen- gingen. Was das Grössenverhältniss beider Zellformen betrifft, so konstatiren wir, dass im Allgemeinen die chromophilen grösser sind. Messungen ergaben folgende Mittelwerthe:

<table>
<thead>
<tr>
<th>chromophile Zellen</th>
<th>Hauptzellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hund 19:11 µ</td>
<td>10:5</td>
</tr>
<tr>
<td>Pferd 16:8</td>
<td>13:5</td>
</tr>
<tr>
<td>Katze 19:8</td>
<td>14:6</td>
</tr>
<tr>
<td>Schwein 18:6</td>
<td>11:3</td>
</tr>
<tr>
<td>Kaninchen 18:8</td>
<td>16:13</td>
</tr>
<tr>
<td>Mensch 18:5</td>
<td>11:3</td>
</tr>
</tbody>
</table>

Die Vertheilung der Zellen in den Zellschlängen hat Dostojewsky so gut beschrieben, dass wir nicht nothwendig haben etwas hinzuzufügen. Bald finden sich Schläuche, die ausschliesslich aus chromophilen Zellen bestehen, andermal treffen wir letztere in der Anordnung der Gianuzzi'schen Mündchen.

Hervorheben müssen wir, dass manche unserer Präparate dafür zu sprechen scheinen, dass eine directe Beziehung zwischen Gefässen und secernirenden Elementen der Hypophyse bestehe. Relativ weite Gefässe zeigen eine Wandung, die nur aus einer einfachen Endothellage gebildet ist. Unmittelbar an diese Wandung, nur durch die äusserst dünne Tunica propria von ihr getrennt, schliessen sich die Epithelien der Hypophysenschläuche an; oft aber erhält man Bilder (Hund, Schwein, vgl. o. S. 264), an welchen die chromophilen Zellen geradezu als Epithelbelag derartigen dünnen Gefässwänden folgen (Taf. XIX, Fig. 3).

Unters. an der Hypophyse einiger Säugthiere und des Menschen. 287

Resultate weit eelatanter sind, als die der von Dostojewsky verwendeten Färbungen (Carmin, Osmium, Eosin), zu gute.

Ein physiologisches Interesse gewinnen indessen die Ergebnisse dieser Reactionen erst, wenn wir sie mit unseren Resultaten bezüglich der Tinction der colloiden Massen zusammenstellen. Gleich den chromophilen Zellen an Chromsäurepräparaten lassen sich jene färben durch Indigo, Hämatoxylin und Osmiumsäure, gleich denselben zeigen sie keine specifische Jodreaction, entbehren sie ferner der Doppelbrechung. Bei combinirter Färbung mit Eosin und Hämatoxylin besteht ein Unterschied, insofern als zuweilen die Colloidmassen die violette Hämatoxylinfärbung festhalten (Taf. II, Fig. 10), während an anderen Präparaten desselben Organs sie rosaroth tingirt sind. Ebenso kann ausnahmsweise bei der Merkel'schen Tinction (Tafel II, Fig. 8) die rothe Carminfarbe an Stelle der blauen Indigotinction an colloidem Cysten-Inhalt gefunden werden. Von dieser einen Differenz abgesehen, verhalten sich gewöhnlich colloide Massen und chromophile Zellen gleichartig. Besonders erwähnt sei noch, dass (an Boraxcarminpräparaten) nicht tingirte Colloidmassen mit der mattglänzenden, die Kerne der chromophilen Zellen umgebende Materie vollkommen übereinstimmen. Nehmen wir die Beobachtungen hinzu, welche Virchow, Langen u. A. bereits zur Annahme einer direkten Umwandlung von Hypophysenzellen in Colloidmassen geführt haben, dass nämlich kleine Colloidkörper geradezu an Stelle chromophiler Zellen zu treten scheinen, so ist wohl genügend gerechtfertigt, wenn wir auf die Existenz einer direkten Beziehung zwischen Colloidmassen und Hypophysenzellen schliessen. Als wesentlicher Unterschied könnte allenfalls das eine angeführt werden, dass die Centren der geschichteten Colloidmassen in grösseren Cysten nicht mehr tingirt werden. Befremden kann dies indessen wohl kaum. Auch anderwärts, an der Schilddrüse, sehen wir in ganz der gleichen Weise die periphere Schicht ähnlicher Ablagerungen in hohem Masse tinctionsfähig, während der Kern ungefärbt bleibt. Wir können annehmen, dass in dem einmal abgeschiedenen Material chemische Veränderungen ablaufen, die jene Differenzierung genügend begründen. Möglicherweise ist auch in Betracht zu ziehen, dass die als Beize wirkende Härungsflüssigkeit nicht in das Innere grösserer Colloid-Anhäufungen eindringt, und dass in Folge dessen hier die Färbung ausbleibt. Doch haben wir auch Stellen gesehen,
an welchen gefärbte und ungefärbte Schichten zweimal wechselten; hier kann jener Einwand nicht in Betracht kommen.

1) Henle, Nervenlehre. 2. Aufl. S. 326. Allerdings scheint Henle diese Cysten zum Hinterlappen zu rechnen, doch geht aus seiner Beschreibung hervor, dass die im Umschlagtheile und Epithelsaume enthaltenden Cysten gemeint sind.

2) Kölliker, Entwicklungsgeschichte. II. Aufl. S. 527 ff.

3) Kraushaar, Entwicklung der Hypophyse u. s. f. Zeitschrift für wissenschaftliche Zoologie. 1885. II. I.
Unters. an der Hypophyse einiger Säugerthiere und des Menschen. 289

schnürung der Hypophysenanlage von der Mundbucht abgesonderten Tasche aufzufassen ist.

Schwieriger gestaltet sich die Frage, welcher Art die Thä-

Archiv f. mikrosk. Anatomie. Bd. 28. 20

Vorliegende Arbeit wurde im anatomischen Institute der Tierarzneischule in Bern auf Anregung und unter Leitung des Herrn Prof. Dr. Flesch ausgeführt. Es sei mir gestattet, für die Liebenswürdigkeit, mit welcher derselbe mich während der Arbeit unterstützt hat, ihm meinen innigsten Dank auszusprechen.

Erklärung der Abbildungen auf Tafel XIX und XX.

Hypophyse des Hundes:
Tafel XIX. Fig. 3, 5, 6. Tafel XX. Fig. 7, 10, 11, 12, 13 A, B, C.

Hypophyse der Katze:
Tafel XX. Fig. 9.

Hypophyse des Pferdes:
Tafel XIX. Fig. 1, 2.
Unters. an der Hypophyse einiger Säugethiere und des Menschen. 291

Hypophyse des Schweines:
Tafel XX. Fig. 8.

Hypophyse des Menschen:
Tafel XIX. Fig. 4.

Tafel XIX.

Fig. 1. Hypophyse des Pferdes. Weigert'sche Färbung. Hartnack System VII. Oc. 3. Kurzer Tubus. Anordnung der chromophilen Zellen.

Fig. 2. Hypophyse des Pferdes. Merkel'sche Färbung. 4 mal vergrössert. Frontalschnitt. x Cysten im Epithelsaume mit blau tingirtem Inhalt.

Fig. 3. Hypophyse des Hundes. Merkel'sche Tinctio. Leitz S. VII. Oc. I. K. T. Ausschliesslich aus chromophilen Zellen gebildete Schläuche. Anordnung der Zellen entlang den Capillaren.

Fig. 4. Hypophyse des Menschen (6 monatliches Kind). Weigert'sche Färbung. Leitz S. VII. Oc. I. Chromophile Zellen dunkel gefärbt. Schwarz die rothen Blutkörperchen in den Gefässen.

Fig. 5. Hypophyse des Hundes. Querschnitt. Hartnack System I. Oc. I. K. T. Doppeltinjection mit Hämatoxylin und Eosin. x; x Cysten mit violett tingirtem Inhalt.

Fig. 6. Hypophyse des Hundes. Merkel'sche Färbung. Leitz, Syst. VII. Oc. III. K. T. x Grenzschicht des Epithelkörpers gegen die Hypophysenhöhle.

Tafel XX.

Fig. 7. Hypophyse des Hundes. Annähernd frontal durchschnitten. Weigert'sche Färbung. Hartnack S. I. Oc. II. K. T.

Fig. 8. Hypophyse des Schweines. Aus einer sagittalen Schnittserie. Loupenvergrösserung. x — selbständige Höhle im Hirntheile. x — Cyste im Epithelsaume. x; x — Auf der dorsalen Fläche den Hirntheil umgebendes Epithelgewebe.

Fig. 9. Hypophyse der Katze. Querschnitt. Hartnack I und Seibert Oc. 0. Einfachste Form der Hypophysenhöhle.

Fig. 10. Hypophyse des Hundes. Querschnitt des Hirntheiles aus einem in Müllerscher Flüssigkeit gehärteten, mit Carmin gefärbten Präparate. a) Spindelzellen-Züge. b) Glia-Nester.

Fig. 11. Hypophyse des Hundes (aus denselben Präparate wie Fig. 7). Leitz S. VII. Oc. I. K. T. x Gefässschlingen im Hirntheil. x; x Cysten des Epithelsaumes.

Fig. 13 A. Schematischer horizontaler Durchschnitt der Hypophyse des Hundes. *—* Höhe des schematischen Querschnittes. Fig. 13 B. **—** Höhe des schematischen Querschnittes. Fig. 13 C.

Fig. 13 B. Hypophyse des Hundes. Querschnitt in der Höhle des Umschlagtheiles. * Verästelungen der Hypophysenhöhle (vgl. Fig. 13 A).

Fig. 13 C. Hypophyse des Hundes. Schematischer Querschnitt in der Mitte (vgl. Fig. 13 A).

Fig. 1—7 und Fig. 11 sind von Herrn Rabus, Zeichner der anatomischen Anstalt in Würzburg, Fig. 8—10 und Fig. 12 von Herrn Kieneker, Schüler der Kunstschule in Bern, die Schemata von Herrn Prof. Flesch gezeichnet.

Über Chylusgefässsysteme bei Enchytraeiden.

Von

Dr. W. Michaelsen in Hamburg.

Hierzu Tafel XXI.

Schon in einer früheren Arbeit über Enchytraeiden habe ich auf gewisse Bildungen hingewiesen ¹), deren Funktion höchst wahrscheinlich darin besteht, den Uebergang des Nahrungssäftes aus dem Darm in das Blut zu vermitteln. Diese nach eingehenderen Untersuchungen ausgeführte Abhandlung hat den Zweck, jene vorläufigen Mittheilungen zu vervollständigen und durch Abbildungen

Buchholzia.

2) Vejdovský, Monographie d. Enchyträiden. Prag 1879. pag. 54.
kannte ihn am lebenden Thier dadurch, dass Leibesflüssigkeit durch ihn aus dem Körper austrat. In Schnittserien konnte ich ihn seiner Kleinheit wegen nicht zur Anschauung bringen. Was die Ansicht Ude's 1) anbetrifft, nämlich, dass den Enchytraeiden überhaupt weder Kopf- noch Rückenporen zukämen, so glaube ich zu ihrer Widerlegung nicht vieler Worte zu bedürfen. Jeder Hauptsagittalschnitt durch den Mittel- und Hinterkörper von Enchytraeus hegemon Vejd. zeigt die Rückenporen in einer Deutlichkeit, die nichts zu wünschen übrig lässt (s. Fig. 13), ebenso jeder Hauptsagittalschnitt durch den Kopf von Pachydrilus Beun. meri mihi den Kopfporus (s. Fig. 14). Wenn auch die Rücken- und Kopfporen bei anderen Enchytraeiden nicht die Dimensionen erreichen, wie in diesen angeführten Fällen, so ist doch ihr Vorhandensein bei vielen derselben nicht weniger sicher. Im übrigen verweise ich zur Erklärung der Figuren 13 und 14 auf die be- züglichen Beschreibungen auf pag. 19 und 20 meiner in Anm. 1 angegebenen Dissertation.

Enchytraeus tenuis.

„Dünne, 10 -15 mm lange Enchytraeen mit schlanken, am inneren Ende schwach umgebogenen, sonst geraden Borsten, die stets zu zweien in einem Bündel stehen. Rückenporen vom VII. (incl.) Segment an, wie die von E. hegemon (im Verhältniss auch ungefähr ebenso gross). Kopfporus in Schnittserien deutlich erkennbar, zwischen Kopfring und Kopflappen. Rückengefäss im XVIII. Segment aus dem Darmblutsinus entspringend; Blut farblos. Gehirn doppelt so lang wie breit, mit convexem Vorder- und Hinterrand (s. Fig. 12). Segmentalorgane mit grossem, ellipti-

lichen Anteceptale; Postseptale ebenso breit wie das Anteceptale und höchstens 3 mal so lang, hinten in einen nach vorn umgeschlagenen, mittellangen Ausführungsgang übergehend. Samentrichter klein, höchstens 2 mal so lang wie breit, mit sehr breitem, umgeschlagenen Rande. Die Breite des umgeschlagenen Randes verhält sich zur Länge des ganzen Trichters wie 1 zu 3. Samentaschen zierlich, mit schlankem Ausführungsgang und mit zwei sich gegenüberstehenden kugeligen Nebentaschen versehen, mit dem Darm communizierend.ª

E. tenuis lebt im Detritus am Ufer der Bille bei Hamburg, und in Blumentöpfen. Veejovský fand ihn im Mai 1882 bei Dablac.

Nach diesem kann ich auf das eigentliche Thema dieser Abhandlung übergehen.

ausgekleidet. Am deutlichsten erkennt man dieses an solchen Schnitten, bei denen sich irgendwie das Epithel vom Blutsinus abgetrennt hat. Der Blutsinus umgibt das Darmepithel nicht derart, dass er es vollständig von den Muskelschichten trennte, wie Vejdovský zeichnet. Durch längsverlaufende Hautsäume (je eine Doppel-lage des Blutsinus umschliessenden Häutchens) hängt das Epithel mit den Darmschichten zusammen. Diese Hautsäume theilen den Darmblutsinus in viele, hart nebeneinander verlaufende Kanäle, die jedoch mit einander in Communication stehen. Der Verlauf der Kanäle gleicht dem der Fäden eines Netzes, welches so in die Länge gezogen ist, dass das Lummen der Maschen vollständig geschwunden ist. Oft aber treten die Kanäle des Blutsinus weiter aus einander, und in den so entstehenden Zwischenräumen stösst das Darmepithel unmittelbar an die Darmschichten. In Fig. 1, einem Querschnitt durch den dorsalen Theil des Magendarmes von E. hegem. Vejd. im XIV. Segment, sieht man diese Spaltung des Blutsinus in einzelne Kanäle, hier freilich mit noch weiteren Complicationen verbunden. Vom XIII. bis zum XVI. Segment nämlich verdickt sich bei E. hegem. das Darmepithel, und zugleich vertiefen sich die einzelnen Kanäle des Blutsinus in das Epithel hinein. Dadurch, dass ungefähr in mittlerer Höhe dieser längsverlaufenden Vertiefungen der einzelnen Blutsinuskanäle die Seitenwände derselben mehr oder weniger nahe an einander treten, schnüren sich mehr oder weniger selbständige Blutbahnen ab, die genau unter den eigentlichen Kanälen des Blutsinus (Fig. 1 bs.) verlaufen, und deren Querschnitt in Fig. 1 mit bsk. bezeichnet ist. Zugleich ist hier (vom XIII. bis zum XVI. Segment) das Darmepithel von einem dichten System ausserst feiner (0,005 mm dicker) Kanälchen durchzogen, die aus dem Darmlumen in schwacher aber regelmässiger Schrägung von hinten nach vorn in dasselbe ein treten und unter Bogen- und Schleifen-Bildung in denselben verlaufen (Fig. 1 chyl.). Wir haben es hier zweifelsohne mit einer Einrichtung zu thun, die den Uebergang des Nahrungssaftes aus dem Darm in das Blut vermitten soll, und die ich deshalb ein Chylusgefässsystem genannt habe. Während die Flimmerbewegung der Darmepithelwimpern die festen, unverdaulichen Stoffe der auf-

1) Vejdovský, Monographie der Enchytraeiden. Prag 1879. Taf. XI, Fig. 5 und 6.
genommenen Nahrung nach hinten, dem After zu schiebt, treiben die wellenförmig von hinten nach vorn fortschreitenden Darmcontraktionen die aus den Nahrungsstoffen bereitete Nahrungslüssigkeit, den Chylus, nach vorn. Der Chylus tritt dann in die Chylusgefäße ein und kann von ihnen durch Osmose in's Blut übergehen. Die Chylusgefäße durchbohren die Zellen des Darmepithels, wie man an Schnitten, welche die Darmepithelzellen senkrecht treffen, deutlich sehen kann (Fig. 2). Dieser Fall von Zelldurchbohrung steht bei den Enchytraeiden nicht einzig da. Wie Vejdovsky zuerst erkannte, sind auch die Segmentalorgane derselben Complexe solcher von feinen Kanälchen durchbohrter Zellen. Den Übergang der Chylusgefäße aus einer Darmepithelzelle in eine andere habe ich nicht beobachten können. Ein ähnliches Chylusgefässsystem findet sich bei E. tenuis mithi. Bei diesem Wurm bildet das Darmepithel vom XIII. bis zum Anfang des XVII. Segments regelmässige Längsfalten (Fig. 3). Jeder Blutsinuskanal tritt im XVII. Segment in eine dieser Falten ein und verläuft am Grunde derselben (Fig. 3 bsk.), um im XIII. Segment wieder heraus zu treten. Die Epithelfalten pressen sich über diesen Blutsinuskanälen fest an einander, so dass die letzteren vollkommen vom Epithel umschlossen sind. Auch hier finden wir wieder ein reiches System von Chylusgefäßen, die sich durch besondere Regelmässigkeit auszeichnen und sowohl auf Quer- wie auf Längsschnitten recht zierliche Bilder geben (Fig. 3 u. 4 chyl.). Die Zellgrenzen sind an dieser Stelle des Darmepithels von E. tenuis sehr undeutlich (in Fig. 4 habe ich schwache Andeutungen derselben gezeichnet, nicht deutlicher als ich sie erkennen konnte). Erwähnen will ich noch, dass sich die Kerne der Zellen gern dicht an die Chylusgefäße anlagern, wohl nur weil sie zwischen Chylusgefäss und Zellwand eingeengt sind. Besonders bei E. hegemone (Fig. 1 und 2) nehmen sie in Folge dessen oft eine lang gestreckte oder nierenförmige Form an.

Im Anschluss an die Besprechung des Chylusgefässsystems sprach ich in meiner Dissertation die Vermuthung aus, dass auch die charakteristischen Darmorgane von E. leptodera Vejd. und E. ventriculosus D’Udekem die Träger eines solchen Chylusgefässsystems sein möchten. Meine späteren Untersuchungen haben diese Vermuthung nicht bestätigt, wohl aber dargethan, dass diese Organe höchst wahrscheinlich eine ähnliche Funktion besitzen. Die in
Rede stehenden Organe, die beiden Darmanhänge im VII. Segment von E. leptodera und die magenförmige Darmverdickung im VIII. Segment von E. ventriculosus, besitzen, wenn sie auch äusserlich ganz verschieden ausscheinen, doch einen gleichen inneren Bau. Es sind Darmtaschen, die nach hinten zu durch einen verengten Verbindungsgang mit dem Darmlumen communiciren. Bei E. leptodera sind es deren zwei, die, vom Darme abstehend, frei nach vorn in die Leibeshöhle hineinragen (Fig. 5 dt.); bei E. ventriculosus sind es deren vier, die fest an den Darm angelegt sind (Fig. 6 dt.). Das Lumen der Taschen ist durch vielfache, unregelmässige Faltenbildung der Wandungen eingeengt, so dass eine bedeutende Vergrösserung der Innenfläche statt hat. Der Darmblutsinus geht auf die Taschen über und bildet, indem er die durch die Faltenbildung der Wandungen aussen entstandenen Rinnen ausfüllt, ein dichtes Netzwerk, von dem die Taschen vollkommen umspnnonen sind (Fig. 5 u. 6 bsk.). Die Flimmerwimpern, welche die inneren Wände der Taschen besetzen, scheinen degenerirt zu sein; sie stehen spärlich und unregelmässig. Die Aussenseite der Taschen von E. ventriculosus ist dicht mit Chloragogenzellen besetzt, während die Taschen von E. leptodera frei davon sind. Was die Zeichnungen und Beschreibungen Vejdovský's anbetrifft, so kann ich sie nicht mit meinen Befunden in Uebereinstimmung bringen. Die feinen Kanälchen, die Vejdovský im optischen Längsschnitt der Darmverdickung von E. ventriculosus zeichnet 1), liessen sich wohl mit den in meiner Fig. 6 mit bsk. bezeichneten Blutsinuskanälen identificiren; jedoch die blasige Bindestanz in den Darmanhängen von E. leptodera 2) weiss ich mir nach meinen Präparaten nicht zu erklären. Ich habe stets einen deutlichen Hohlraum gefunden, erfüllt von einer Flüssigkeit, die keinerlei Farbstoffe annimmt, ebenso wie in den Darmtaschen von E. ventriculosus. Ausserdem sind die Falten der Taschenwandung bei den von mir untersuchten Thieren bei weitem nicht so regelmässig wie sie Vejdovský zeichnet. Meine Ansicht über die Funktion der besprochenen Organe habe ich bereits angedeutet. Ich glaube, dass sie dazu bestimmt sind, die durch die Darmpulsationen nach vorn geschaffte Nahrungsflüssigkeit aufzunehmen und deren Ueber-

1) Vejdovský, Monographie d. Enchytraeiden etc. Taf. VI, Fig. 8.
2) Ebendasselbst, Taf. XI, Fig. 4 bl.
gang in das Blut durch ihre innige Verbindung mit dem Blutgefäßsystem zu vermitteln. Zur vollständigen Erklärung der Fig. 5 will ich noch Folgendes bemerken. Die Speicheldrüsen von E. leptodera münden, wie man an Querschnittserien genau feststellen kann, und wie auch Vej dov ský zeichnet

1), nicht direct hinter dem Schlundkopf, sondern weiter nach hinten in den Oesophagus ein, jedoch eigen tümlicher Weise nicht symmetrisch zu einander. Die eine mündet hart neben der ventralen, die andere in der dorsalen Medianlinie in den Darm ein. Von hier erstrecken sie sich nach hinten als breite, unregelmässige Stränge, in denen ein feiner, eng gewundener Kanal verläuft. Nach hinten zu werden sie dünner und treten dann durch die Darmmuskelschichten hindurch in den Darmblutsinus ein. Hier verästeln sie sich, die dorsale spärlich, die ventrale reichlicher. Die Verästelungen der ventralen treten dann zum grössten Teil wieder durch die Darmmuskelschichten zurück in die Leibeshöhle hinein, während einige Aeste (Fig. 5 sp. 1) im Darmblutsinus blind endigen. Die spärlichen Verästelungen der dorsalen Speicheldrüse endigen ebenfalls blind im Darmblutsinus (Fig. 5 sp. 11). Wahrscheinlich entziehen die Speicheldrüsen dem sie umspülenden Blute des Blutsinus Stoffe, die sie zur Bildung ihres Secretes verwenden.

Ich gehe jetzt zur Besprechung des interessanten Darmanges von B. appendiculata über. Im VII. Segment geht bei diesem Wurm der weite Magendarm (Fig. 7 md.) in den sehr engen Oesophagus (Fig. 7 oes.) über. Vor diesem Übergang wuchern aus dem dorsalen Theil des Magendarms zwei schlauchförmige, sich spärlich verästelnde Ähnliche heraues, die sich jederseits derartig zusammenlegen, dass sie zwei in der dorsalen Medianlinie hart an einander stossende, compacte, nach vorn in die Leibeshöhle hin einragende Massen bilden, die von dem Peritoneum, das auf sie übergeht, zu einem einheitlichen Ganzen, dem Darmdivertikel, zusammen gehalten werden (Fig. 7, 8 u. 9). Das Lumen der Schläuche (Fig. 7, 8 u. 9 chyl.) steht mit dem Darmlumen in Communication. Zellgrenzen innerhalb der Schläuche konnte ich nicht zur Anschauung bringen. Der Darmblutsinus geht vom Magendarm auf den Divertikel über und durchtränkt sämtliche Zwischenräume zwischen den Schläuchen mit Blut (Fig. 7, 8 u. 9 bsk.).

1) Vej dov ský, Monographie d. Enchytraeiden etc. Taf. X, Fig. 2.
An dem vorderen Pole des Divertikels sammelt sich das Blut wieder und geht in das Rückengefäß über, das sich von der Spitze des Divertikels nach vorn durch die Leibeshöhle hinzieht (Fig. 7 u. 9 rg.). Chloragogenzellen bedecken den Divertikel mehr oder weniger spärlich. Die Funktion des Darmdivertikels von B. appendiculata ist meiner Ansicht nach die gleiche, wie die der Chylusgefässsysteme von E. hegemon und E. tennis, sowie der Darmtaschen von E. leptodera und E. ventriculosus. Der Nahrungs- saft tritt in die Schläuche ein und kann von ihnen leicht in das Blut übergeführt werden.

Fassen wir nun einmal zusammen, was die beschriebenen Organe gemeinsames haben und was mich veranlasst, ihnen eine gleiche Funktion zuzuschreiben. Es sind sämtlich Hohlräume, die mit dem Darmlumen communiciren, seien es nun Systeme gleichmässig weiter Kanälichen oder Taschen mit engem Einführungsgang. Die Einführungskanäle zeigen eine mehr oder weniger stark ausgebildete Schrägung von hinten nach vorn, die dem Eintriten der von hinten nach vorn getriebenen Nahrungslüssigkeit förderlich ist (die Secretionsorgane, die Speicheldrüsen, münden in entgegengesetzter Richtung in den Darm ein). Die Lage der Organe steht in bestimmter Beziehung zum Ursprung des Rückengefäßes, also der Stelle, an der die Darmkontraktionen aufhören und in Contractionen des Rückengefäßes übergehen. Bei E. hegemon und E. tennis hören die Darmpulsationen auf (im XVIII. Segment), dicht bevor sie die modifizierte Darmpartie erreichen, so dass der Chylus wohl bis zu derselben hin, aber nicht über dieselbe hinaus getrieben wird. Ebenso bei E. leptodera und E. ventriculosus. Da bei diesen nur wenige (2 resp. 4) aufnehmende Öffnungen sind, so wird auf andere Weise dafür gesorgt, dass der Chylus diese Öffnungen nicht verfehlt. Gleich hinter diesen Einmündungskanälen verengt sich der Darm dergestalt, dass der von hinten kommenden Chyluswelle kein anderer Weg frei bleibt, als der Eintritt in die Taschen. Am auffälligsten ist diese Darmverengung bei B. appendiculata ausgebildet. Dazu kommt hier noch, dass der verengte Darm (der Oesophagus) gar nicht genau in der Verlängerung des Magendarms liegt, sondern mehr von unten in ihn einmündet. Die Pulsationen gehen in gerader Richtung vom Magendarm auf den Divertikel über und treiben den Chylus geradewegs in die Schläuche des Divertikels hinein.
Ueber Chylusgefässysteme bei Enchytraeiden.

Schliesslich stehen sämtliche in Rede stehenden Organe in enger Verbindung mit dem Darmblutsinus, dem Theil des Blutgefäss-systems, dem bei den Enchytraeiden zweifellos die Funktion zukommt, die Nahrungslüssigkeit in das Blut aufzunehmen.

Ich kann diese Abhandlung nicht beschliessen, ohne die Hypothese zu besprechen, die Horst1) in Betreff der Verwandtschaft der Anhänge von E. leptodera und Buchholzia appendiculata mit gewissen Organen bei polychäten Anneliden aufgestellt hat. Meine eigenen Untersuchungen beschränken sich auf die sogenannten Herzkörper von Terebellides Stroemii und von Pectinaria belgica. Ich will die Resultate dieser Untersuchungen kurz anführen, um dann auf die Horst'sche Hypothese überzugehen. Der Herzkörper von Terebellides Stroemii ist ein langes, keulenförmiges, mit ziemlich regelmässig rundem Querschnitt versehenes Organ, das sich durch den grössten Theil des Rückengefasses hinzieht. So weit kann ich die Angaben Steen's2) bestätigen; was jedoch die innere Struktur dieses Körpers anbetrifft, so stimmen Steen's Zeichnungen nicht mit meinen Befunden überein. Der Körper wird von Zellen gebildet, die in der äusseren Zone lang, spindelförmig, nach innen zu aber mehr rund sind. Die Zellen besitzen deutliche Kerne und sind mit Ausnahme der centralen Partie fest an einander gelegt. Um die Axe des Körpers herum stehen sie lockerer und lassen zwischen sich einen Hohlraum (Fig. 10 hr.). Dieser Hohlraum wird von einer Substanz erfüllt, die fast dieselbe Färbung annimmt wie das Blut (nur um eine feine Nuance heller ist), und in der solche unregelmässige, dunkle Körnchen liegen, wie sie in den Chloragogenzellen der Enchytraeiden vorkommen. Zwischen den Zellen sieht man sehr vereinzelnd noch hellere Räume (Fig. 10 hz.), von denen ich nicht sagen kann, ob es Zellen oder Kanälchen sind. Eine ganz andere Struktur besitzt der Herzkörper von Pectinaria belgica (Fig. 11). Derselbe besteht aus einer compacten, vielfach und unregelmässig gelappten, sich durch den grössten Theil des Rückengefasses hinziehenden, grob granulirten Masse, in die zahlreiche Kerne eingestreut sind. Färbung

und Granulation des Körpers erinnern an Färbung und Granulation der Chloragogenzellen. Was nun die Ansicht Horst’s anbetrifft, so gebe ich mein Urtheil wie folgt ab.

Der Darmanhang von Brada, der morphologisch zwischen den Darmdivertikel von Buchholzia appendiculata und die Herzkörper jener Anneliden zu stellen wäre, steht vielleicht auch der Funktion nach zwischen beiden Arten von Organen. Er vermittelt vielleicht die Aufnahme des Nahrungssaftes und scheidet zugleich die unbrauchbaren Bestandtheile aus.

Figuren-Erklärung auf Tafel XXI.

Wiederkehrende Bezeichnungen.

Fig. 1. 270
1. Enchytraeus hegemon Vejd.; Querschnitt durch den dorsalen Theil des Darmes mit dem Rückengefäße, im XIV. Segm. I = Schnittrichtung der Fig. 2.
Ueber Chylusgefässsysteme bei Enchytraiden.

Fig. 2. $\frac{270}{1}$. E. hegemon: Flächenchnitt durch das Darmepithel, im XIV. Segm. (Schnittricht. I in Fig. 1).

Fig. 3. $\frac{300}{1}$. E. tenuis mihi; Sector eines Darmquerschnitts aus dem XIV. Segm.

Fig. 4. $\frac{300}{1}$. E. tenuis; Axialschnitt durch den Darm im XIV. Segm.

Fig. 5. $\frac{150}{1}$. E. leptodera Vejd.; Querschnitt durch den Darm mit den Darmtaschen im VII. Segm. sp.I = ventrale Speicheldrüse, sp.II = dorsale Speicheldrüse.

Fig. 6. $\frac{150}{1}$. E. ventriculosus D'Udek.; Querschnitt durch den Darm mit den Darmtaschen. Im Rückengefäss erkennt man den Ursprung eines Paares seitlich entspringender Blutgefäße, die, hart an das Rückengefäss angelegt, nach der ventralen Medianlinie desselben gehen, um dann in den Blutsinus überzutreten.

Fig. 7. $\frac{270}{1}$. Buchholzia appendiculata Buchh.; Nebensagittalschnitt durch den Darm mit dem Divertikel im VII. Segm. (Schnittricht. III in Fig. 8 u. 9). I = Schnittricht. der Fig. 8. II = Schnittricht. der Fig. 9.

Fig. 8. $\frac{270}{1}$. B. appendiculata; Querschnitt durch Darm und Divertikel im VII. Segm. (Schnittricht. I in Fig. 7 u. 9). III = Schnittricht. der Fig. 7.

Fig. 9. $\frac{270}{1}$. B. appendiculata; Lateralschnitt (etwas schräg v. hinten unten nach vorn oben steigend) durch den Darmdivertikel im VII. Segm. (Schnittricht. II in Fig. 7). I = Schnittricht. der Fig. 8. III = Schnittricht. der Fig. 7.

Fig. 10. $\frac{280}{1}$. Terebellides Stroemii; Theil eines Querschnitts durch den Herzkörper. hr. = axialer Hohlraum. hr. = heller Raum.

Fig. 11. $\frac{200}{1}$. Pectinaria belgica; Querschnitt durch das Rückengefäss. hk. = Herzkörper.

Fig. 12. $\frac{100}{1}$. Enchytraeus tenuis; Umriss des Gehirns von oben gesehen. cm. = Commissur. gm.I = vorderes Gehirnmuskelpaar. gm.II = hinteres Gehirnmuskelpaar. kn. = Kopflappennerven.

Fig. 13. $\frac{100}{1}$. E. hegemon; Hauptsagittalschnitt durch den Hautmuskel schlauch, einen Rückenporus schneidend. e. = Cuticula.
W. Michaelsen: Ueber Chylusgefässsysteme bei Enchytraeiden.

Fig. 14. \(\frac{100}{1} \) Pachydrilus Beumeri mihi; Hauptsagittalschnitt durch den Kopf mit dem Kopfporus. gh. = Gehirn. gl. = Geschmackslappen in der Mundhöhle. hp. = Hypodermis. kp = Kopfporus. lh. = Leibeshöhle. md. = Mund.
Studien zur vergleichenden Histologie der Retina.

Von

Dr. P. Schiefferdecker, Prosector in Göttingen.

Hierzu Tafel XXII, XXIII und XXIV.

Die Müller'schen Stützfasern und die tangentialen Fulcrumzellen W. Müller's bilden zusammen den Haupttheil der Stützsubstanz der Retina und erscheinen als morphologisch gleichwerthig. Während die Müller'schen Stützfasern die Retina radiär durchsetzen, liegen die tangentialen Fulcrumzellen parallel den übrigen Schichten der Retina. Demgemäss schlage ich vor, die Namen dieser Zellen zu ändern und die ersteren als „radiäre..."
Stützzellen", die letzteren als "concentrische Stützzellen" zu bezeichnen. Ich werde mich im Folgenden dieser Namen bedienen, welche mir den Vorzug der Einfachheit und Klarheit vor den bis jetzt üblichen zu haben scheinen, da sie Lage, Zweck und auch Beschräffenhheit der zu bezeichnenden Gebilde hervorheben, insofern sie die Zellnatur derselben und ihre Verschiedenheit von Bindegewebszellen betonen. "Tangential" liegen die Zellen, wie schon erwähnt, nicht, sondern "concentrisch".

Beide Zellarten sind von lange her bekannt. Die radialen sind auch im wesentlichen so genau und eingehend beschrieben worden, dass ich die sehr grosse Literatur hier vernachlässigen zu können glaube mit Ausnahme einiger weniger Angaben bei strittigen Punkten. Trotz dieser vielfachen Bearbeitungen scheint mir indess auf manche Dinge, wie z. B. auf die charakteristische Form dieser Zellen noch zu wenig Gewicht gelegt worden zu sein. Allerdings ist ja dabei auch zu berücksichtigen, dass dieses Studium dann erst ein wahres Interesse für den betreffenden Forscher erhalten konnte, wenn man die concentrischen Stützzellen in ausgedehntem Maasse der Beobachtung unterzog. Diese letzteren sind nun aber bis jetzt eigentlich recht stiefmütterlich behandelt worden, woran allerdings wohl mit der Umstand Schuld sein mag, dass sie viel schwieriger zu untersuchen sind, als die radialen und auf senkrechten Schnitten gerade bei den höheren Thieren durchschnittlich nur wenig in's Auge fallen.

Zuerst gesehen sind dieselben wohl von H. Müller, jenem ausgezeichneten Erforscher der Retinastruktur. Im Jahre 1851 berichtet derselbe in der physikal.-medicin. Gesellschaft zu Würzburg "Ueber sternförmige Zellen der Retina" (1. 2). Er beschreibt dieselben hier von Knorpel- und Knochenfischen und gibt an, dass man bisweilen zwei Lagen deutlich unterscheiden kann: die eine bestehend aus unregelmässig polygonalen, etwas körnigen Zellen, die durch kurze und zum Theil sehr breite Brücken mit einander so in Verbindung stehen, dass an manchen Stellen bloss Lücken bleiben, die kleiner sind als die Zellen, die zweite zusammengesetzt aus Zellen, deren zahlreiche Fortsätze verhältnissmässig zum Körper sehr entwickelt sind, indem dieser die Breite der stärkeren Aeste manchmal kaum übertrifft und die Länge der letzteren nahe 0,1" vom Kern aus beträgt. Die äussersten Zweige dieser Zellen anatomosieren nun ebenfalls und bilden so ein Netz,
Studien zur vergleichenden Histologie der Retina.

307

Im Jahre 1853 bespricht Müller (3) ebendaselbst wieder diese Zellen und führt an, dass sie in der Zwischenkörnerschicht von Fischen und Schildkröten vorkommen.

In eben diesem Jahre findet Vintschegau (4) auch derartige Zellen, ohne indess soviel von denselben wahrzunehmen, als Müller schon gesehen hatte.

Im Jahre 1856 geht H. Müller in einer grösseren Arbeit (6) über die Retina näher auf die betreffenden Zellen ein und gibt Abbildungen von denselben. Taf. I, Figg. 9—11 zeigen solche vom Kaulbarsch. An Fig. 9 sieht man die beiden schon oben erwähnten Lagen, und Müller fügt die Beobachtung hinzu, dass die schlanke, ein weitmaschigeres Netzwerk bildenden Zellen, die innere der beiden Lagen einnehmen. Vom Barsch wird eine ähnliche Zelle abgebildet. „Bei einigen Fischen“, sagt H. Müller (6, pag. 19), „(z. B. Cyprinus barbus, Leuciscus) findet sich an analoger Stelle ein dichtes Netz von streifigen ramificirten Strängen, 0,002—0,006mm breit, welche ähnliche Lücken lassen wie jene Zellen, an denen aber eine Zusammensetzung aus Zellen kaum zu erkennen ist, sondern einzelne dickere Stellen den Zellenkörperrn zu entsprechen scheinen. Bisweilen fand ich ein solches Netz von Strängen neben deutlichen Zellen. Bei Rochen und Haifischen sind den oben beschriebenen ähnliche zum Theil kolossale Zellen sehr deutlich“. „Wenn demnach das Vorkommen solcher Zellen in der angegebenen Schicht (Zwischenkörnerschicht) bei Fischen allgemein zu sein scheint, so ist es auffallend, dass evident ähnliche Zellen mir bis jetzt ausserdem nur bei Schildkröten vorgekommen sind, wo sie ebenfalls mit vielen und langen Fortsätzen versehen sind, deren Anastomosen

Max Schultze (7) bestätigt 1859 das Vorkommen der Zellen bei Fischen, und giebt Abbildungen derselben auf einem Querschnitt der Retina (Fig. 5 f) und von der Fläche gesehen (Fig. 6) von Raja clavata. Doch geben seine Beobachtungen nicht ein so genaues Bild der wirklichen Verhältnisse der Zellen wie die so ausgezeichneten von H. Müller.

Heinemann (9) macht 1864 Mittheilungen über den Bau der Vogelretina und erwähnte dabei (pag. 258) „an die äussere Körnerschicht stossende kleine Zellen mit körnigem Inhalt“, von denen er meint, dass sie wahrscheinlich den von H. Müller bei Fischen beschriebenen grossen Zellen analog seien.

Steinlin (10) gibt 1865 eine genauere Beschreibung nebst Abbildung dieser Zellen bei Fischen, ohne indess mehr zur Kenntniss zu bringen als H. Müller. Auch des Vorkommens der Zellen bei der Schildkröte thut er Erwähnung.

Bei einem Säugethiere, dem Ochsen, fand Kölliker (11) unsere Zellen. Er sagt darüber (pag. 689): „Es fanden sich nämlich hier (in der Zwischenkörnerschicht) wagerecht liegende grössere Zellen mit deutlichen Kernen und ebenfalls wagerecht abgehenden Ausläufern, die auf senkrechten Schnitten wie bipolare Nervenzellen sich ausnehmen, höchst wahrscheinlich jedoch ebenfalls nur der Bindesubstanz der Retina angehören."

W. Krause veröffentlichte 1868 seine Untersuchungen über die Membrana fenestrata (12), worin er die grossen von H. Müller gesehenen Zellen als Membr. perforata zusammenfasste. Genauer
werden wir auf diese Arbeit wegen der darin ausgesprochenen ganz eigenartigen Ansichten über die Retinastructur noch später einzugehen haben.

Landolt (13) bemerkt 1871 in seinen Beiträgen zur Anatomie der Retina von Frosch, Salamander und Triton kurz, dass er die von Manz beschriebenen Zellen und ebenso die nach Krause die Membr. fenestra t bildenden nicht habe finden können.

Beim Pferde wurden die concentrischen Stützzellen dann von Rivolta (14) 1871 gefunden. Diese Arbeit war mir nicht zugänglich. Aus der folgenden (15) ist zu entnehmen, dass Rivolta die Zellen für nervös hielt: „Non esitai un istante a collocare fra le cellule nervose, poiché la loro forma, il contenuto e la varicosità dei prolongamenti le identificara no alle cellule nervose."

Wie ebenfalls aus der folgenden Arbeit (15) hervorgeht, leugnete Rivolta, dass in der Retina des Pferdes eine Krause'sche Membrana fenestra t existire „in luogo di tale membrana esiste uno strato di cellule moltipolari, collocate orizzontalmente, che sembrano alquanto appianate, di forma fusiformi, rotonde, stellate, del diametro di 0,016—0,04 mm."

Sodann gedenkt 1874 Schwalbe (16) unserer Zellen ausführlicher und giebt (p. 393) eine Abbildung derselben (Flächenansicht des von den Zellen gebildeten Netzwerkes). Das Präparat wurde gewonnen durch eine Flächenspaltung der Retina des Pferdes nach Behandlung mit verdünnter Chromsäure (ebenso wie bei Golgi und Manfredi), isolirt hat Schwalbe die Zellen nicht. Er sieht auf dem so gewonnenen Flächenpräparate „zahlreiche
Studien zur vergleichenden Histologie der Retina.

311

JHicli die inneren Zellen stellenweise das Bild der granulirten Substanz, so wie ich sie § 18 geschildert habe, darbieten können. Wenn wir ferner wissen, dass die äussere granulirte Schicht sich in ganz ähnlicher Weise bildet, wie die innere (Babuchin), so können wir die Verschiedenheiten beider nur noch darin finden, dass in der äusseren die embryonalen Bildungselemente der granulirten Substanz bei spärlicher Entwicklung der letzteren wohl erhalten bleiben, stellenweise sogar sich zu wohl charakterisirten Zellen verschiedener Art entwickeln, während in der inneren granulirten Schicht die zelligen Elemente sehr zurücktreten. Mit demselben Recht, wie wir die Hauptmasse der inneren granulirten Schicht für nicht nervös erklärt haben, müssen wir dasselbe auch für die äussere annehmen, trotz der grossen Aehnlichkeit der Zellkerne mit denen von Ganglienzellen. Letztere scheint lediglich ein interessantes Document für die gemeinsame Abstammung der Elemente der granulirten Substanz, sowie der Ganglienzellen der Retina aus demselben vom Keimblatt gelieferten Bildungsmateriale der Netzhaut zu sein.

Im Jahre 1873 schon war die grosse Arbeit von Langerhans (17) über Petromyzon Planeri erschienen. In dieser findet sich auch eine eingehende Beschreibung der Retina. Langerhans beschreibt in dieser eine doppelte Schicht von Ganglienzellen, welche sehr gross und auffallend seien, und zwischen denen eine Schicht von Opticusfasern — secundäre Schicht — eingeschoben sei, so dass diese drei Lagen von aussen nach innen aufeinander folgten, aussen unmittelbar an die äussere granulirte Schicht anstossend, innen an die inneren Körner, auf welche dann die unregelmässig gelagerte primäre Schicht der Opticusfasern gefolgt von der inneren granulirten sich anschliessen. Langerhans schliesst sich in dieser Deutung des Befundes im wesentlichen an M. Schultze an, welcher 1871 eine kleinere Mittheilung über die Retina der Neunagen gemacht hatte (18).

Gegen diese Auffassung von M. Schultze und Langerhans, dass die ebenbeschriebenen Zellen nervös seien, wendet sich W. Müller 1874. Er ist der erste, welcher die Zellen als eine besondere von der äusseren granulirten getrennte Schicht beschreibt, der er den Namen der „Schicht der tangentialen Fulcrumzellen“ giebt. Erst über dieser Schicht (nach aussen vor ihr) findet der Contact der Nervenenden und Sehzellen statt. Bei Petro-

Bei den höheren Vertebraten findet sich die ganze Schicht nur in einem Rudiment; ich rechne hierher die einfache unzusammenhängende Lage rundlicher Zellen, welche besonders deutlich bei Reptilien und Vögeln der inneren Fläche der Schicht der Nervenansätze dicht anliegt und am gehärteten Präparate nicht selten durch einen schmalen Raum von den unten liegenden Elementen der Retina getrennt ist.

Ich vermag in der ganzen Schicht weiter nichts zu sehen, als eine Sicherungsvorrichtung, durch welche die zarten Fortsätze der Zellen des Ganglion retinae in ihrer Lage befestigt werden, und bringe damit das Vorhandensein der Lücken in Zusammenhang,
welche zwischen den mächtigen Zellkörpern in fast regelmäßigen Abständen angebracht sind.«

Eine genauere Beschreibung dieser Schicht vom Hecht liefert 1874 Reich (21). Er findet hier die Zwischenkörnerschicht aus vier bis fünf Lagen bestehend, von denen die drei oder vier äusseren aus wirklichen Zellen, die innerste aber aus einem Gesplechte von band- oder strangartigen Gebilden aufgebaut sind. Die Be-standtheile dieses Gesplechts, welches der inneren Körnerschicht anliegt, sind 0,003—0,005 mm (einige auch mehr) breite und bis 0,2 mm lange offenbar platte Stränge, welche stellenweise eine ziemlich deutliche Streifung und an den Enden zuweilen eine mehr oder weniger ausgeprägte Auffaserung zeigen. Ein Kern ist in ihnen sehr selten zu finden. Auf diese folgen nach aussen zwei andere aus sternförmigen, tiefgelappten, einen granulirten Kern tragenden Zellen bestehend, deren oft lange Fortsätze anastomo-

Die 1876 erschienene Arbeit von Krause über die Nerven-
endigung in der Retina, in welcher auch Beobachtungen über unsere Zellen sich vorfinden, werde ich mit den anderen Arbeiten dieses Autors gemeinsam später besprechen.

Merkel (26) erwähnt 1876 in seiner Arbeit über die menschliche Retina die concentrischen Stützzellen nur kurz, indem er hervorhebt, dass solche in der menschlichen Retina sicher nicht vorhanden seien. Beim Rinde habe er sie auch gesehen, ähnlich wie Rivolta, Golgi und Manfredi, sowie Schwale sie vom Pferd beschreiben (p. 20, 21).

Merkel war so freundlich, mir Zeichnungen zur Verfügung zu stellen, auf denen nach früher von ihm angefertigten Präparaten derartige Zellen auf Quer- und Flächenschnitten der Retina von Rind und Hecht zu sehen waren.

Ranvier (25) beschreibt 1882 an der äusseren granulirten Schicht drei verschiedene Lagen kernhaltiger, nicht nervöser Zellen (p. 974-76):

1) Cellules basales externes, welche an der äusseren Grenze der Schicht zwischen den Stäbchen und Zapfenfasern liegen. Sie werden abgebildet und beschrieben zunächst vom Gecko, doch wird bemerkt, dass sie auch bei anderen Thieren vorkämen, z. B. Pelobates (auch Abbildung), Frosch. Nach den Abbildungen liegt eine Reihe von grossen, mehr rundlichen als ovalen Kernen der äusseren Seite der äusseren granulirten Schicht entweder unmittelbar an, oder in der Nähe derselben.

2) Cellules basales interstitielles, welche in der Dicke der Schicht liegen. Sie werden als grosse rundliche Zellen mit sehr grossen Kernen von Pelobates abgebildet, doch wird angegeben, dass man dieselben auch öfters beim Frosch antrifft.
3) Cellules basales internes, welche an der inneren Seite der äusseren granulirten Schicht (plexus basal nach Ranvier) anliegen und den von H. Müller früher beschriebenen Zellen entsprechen.

"Chez ces animaux (perche, brochet) les cellules basales internes forme deux couches distinctes, qui se montrent très nettement sur des coupes de la rétine faites perpendiculairement à sa surfacela plus externe de ces couches est formée de cellules relativement épaisse, l'autre de cellules minces. Dans les préparations obtenues par dissociation ... ces cellules se montrent étoilées, anastomosées les unes avec les autres de manière à constituer un réseau élégant, comparable à celui que forme les cellules basales de l'épithélium olfactiv." Auch bei der Katze finden sich ähnliche Zellen, welche aber in einer Schicht liegen und auf dem Querschnitt ziemlich weit von einander entfernt erscheinen, isolirt man sie nach Maceration in Drittelalkohol, so sind es „cellules élégantes, munies d'un très grand nombre de prolongements aplatis et ramifiés."

Im Jahre 1883 erwähnt Schwalbe (27) in einem Lehrbuch der Anatomie der Sinnesorgane kurz das Vorkommen der betreffenden Zellen, ohne näher auf die Frage einzugehen (pag. 102).

Studien zur vergleichenden Histologie der Retina.

Die Zellen der unteren (inneren) Lage sind ausgesprochen sternförmig, mit zahlreichen sich theilenden, vielfach in dünne Fasern auslaufenden Fortsätzen, die mit benachbarten anastomosiren. Die Zellen sind kernhaltig. Durch Silber sind keine Zellgrenzen nachzuweisen. In dem Raum zwischen beiden Lagen befinden sich grössere Lymphräume, die an gehärteten Präparaten mit feinkörnig geronnener Lymphe erfüllt sind. „Hier sei (pag. 464) nur noch erwähnt, dass man an Retinaschnitten in der geronnener Lymphe ziemlich grosse, ovale Kerne sieht (Fig. 1, l), die manchmal in ziemlich gleicher Entfernung von einander liegen, streckenweise aber ganz fehlen (Fig. 1, k). Sie gehören flachen Zellen an, deren Grenzen durch die geronnene Lymphe verdeckt werden und entsprechen den tangentialen Fulcrumzellen W. Müller's. Als viereckige, kernhaltige Platten, wie sie W. Müller bei Petromyzon und Salensky beim Sterlett zeichnen, erscheinen sie nur, wenn das Gewebe in Alkohol geschrumpft ist; an Osmiumpräparaten sieht man solche Platten niemals. Uber die Form dieser Zellen kann ich keine bestimmten Angaben machen, glaube aber, dass sie an der Wandbildung der beschriebenen Lymphräume participiren."

In seiner Untersuchung über die Retina des Menschen beschreibt A. Dogiel (29) dann 1884 Zellen, welche nahe der Seicht der Nervenansätze liegen und multipolar sind, indem sie mehrere peripherische und einen centralen Fortsatz besitzen. Ich werde auf diese Arbeit bei der Besprechung meiner Funde noch genauer einzugehen haben.

W. Krause's letzte Arbeiten über unseren Gegenstand (30, 31) will ich theilweise im Zusammenhange mit seinen früher erwähnten Publikationen, theilweise bei Beschreibung der einzelnen von mir gemachten Beobachtungen besprechen.

Endlich habe ich noch zu erwähnen, dass Herr Dr. Norden-son, welcher hier in Göttingen seit längerer Zeit über die Anatomie des Auges arbeitet, mir mündlich die Mittheilung machte, dass er die betreffenden Zellen bei mehreren Säugethieren und dem Menschen gefunden habe, und auch die Güte hatte, mir seine Präparate zu zeigen und theilweise zur Benutzung zu überlassen.

Ich habe dann selbst eine vorläufige Mittheilung über die Resultate meiner Arbeit 1884 veröffentlicht (32). Derselben sollte eigentlich damals die Veröffentlichung der Arbeit auf dem Fusse

Wie man aus dieser Übersicht der einschlägigen Literatur ersieht, waren die concentrischen Stützzellen wohl vielfach gesehen worden, auch bei Wesen aus allen Klassen aufgefunden worden, doch fehlte bis jetzt noch ein Zusammenhang zwischen diesen Funden, die immer mehr oder weniger individuell genannt werden konnten. Die beiden einzigen Forscher, welche einen Versuch gemacht hatten, einen allgemeineren Zusammenhang festzustellen, W. Müller und W. Krause, hatten zu wenig untersucht und theilweise auch das gefundene nicht richtig gedeutet. Ich will nun in dieser Arbeit den Versuch machen zu zeigen, dass wir hier in den concentrischen Stützzellen ein Zellsystem vor uns haben, welches ein sehr charakteristisches für die Retina und für jede Gattung ist und sich in seinen Hauptbestandtheilen durch alle Klassen der Wirbelthiere verfolgen lässt.

Ueber die von mir zu diesen Untersuchungen benutzte Technik habe ich Folgendes anzugeben:

Da es nothwendig war, Zellen in ihrer Grösse und Form zu betrachten, welche mitten in der Retina eingebettet lagen, so war es vor allem nöthig, eine gute Isolationsmethode zu haben. Als solche benutzte ich zuerst das Einlegen in Ranvier'schen Alkohol; bald fand ich aber, dass eine andere Flüssigkeit mir für die meisten Augen bessere Dienste leistete. Dieselbe war folgendermaassen zusammengesetzt:

\[
\begin{align*}
\text{Aq. dest.} & \quad 20 \text{ Vol. Th.} \\
\text{Glycerin} & \quad 10 \text{ " } \\
\text{Methylalkohol} & \quad 1 \text{ " }
\end{align*}
\]

Ich will diese Mischung der Kürze halber „Methylmixture“ nennen. In ein mässiges Quantum dieser wird das aufgeschnittene Auge oder die Retina allein bineingelegt und bleibt darin mehrere Tage. Wie lange, richtet sich leider ganz nach dem individuellen Falle. Sei es nun, dass ich diese Mischung oder den Ranvier'schen Alkohol benutzte, jedenfalls wurde an dem geeignet erscheinenden Zeitpunkte ein Stückchen Netzhaut herausgenommen und

Hat man den Zeitpunkt für das Herausnehmen aus der Mutter richtig getroffen, so kann man sämtliche Elemente der Retina (nur die Stäbchen und Zapfen sind in ihrer Form stärker verändert) wohl erhalten und isolirt finden. Es kann aber auch leicht vorkommen, dass eine ganze Anzahl derselben gut isolirt erscheint und manche dagegen sich so gut wie gar nicht isolirt haben. So ist man dann öfters genöthigt, neue Präparate einzulegen und auf's neue zu probiren. Ich habe von dieser Launenhaftigkeit der Isolirmethode, wenn ich dieses eigentlich ganz falsche Wort hier gebrauchen darf, öfter sehr ekelhafte Beispiele gehabt, und bin bis zuletzt meines Erfolges nie sicher gewesen. Selbstverständlich ist es ausserdem natürlich, dass die Theile ganz lebensfrisch in die Mischung kommen müssen, wenn man wirklich gute Präparate haben will, aber diese Bedingung gilt ja für alle histologischen Untersuchungsmethoden.

Zum Härten der Augen wurde Müller'sche Flüssigkeit, Chromäure 1 : 600 und Acet. pyrolignos. 1 Th. zu 3 Th. Aq. destill. angewendet. Ich möchte letzteren Stoff empfehlen, er liefert sehr klare Bilder mit im ganzen wenig Veränderungen der Elemente. Bei Augen kleinerer Thiere ist auch die Ranvier'sche Methode: kurzes Härten in Osmium resp. Osmiumdampf und dann Müller'sche Flüssigkeit recht gut. Recht wichtig scheint es mir zu sein, das Auge womöglich nicht zu öffnen, bis es gehärtet ist, was bei kleineren und mittleren Augen auch ganz gut auszuführen geht.

Um das Auge zu schneiden, wird es am besten in Celloidin

1) Dasselbe ist aus Rostock von Herrn Dr. Witte zu beziehen.
Eingebettet. Es wird zunächst in der bekannten Weise in abso-
luten Alkohol und Aether gelegt, und von da in nicht zu dicke
Celluloidinlösung. Von dieser wird eine grössere Menge zugesetzt.
Man schliesst das Gefäss zunächst, um das Auge während einiger
Tage von dem Celluloidin erst gründlich durchdringen zu lassen,
dann lüftet man den Deckel zuerst wenig, in den folgenden Tagen
mehr, um ein allmäßliches Verdunsten des Alkohol und Aether
herbeizuführen und so das Celluloidin um das Präparat und da-
durch langsam wieder dasjenige im Präparat einzudicken. Ist
 diese Eindickung soweit vorgeschritten, dass man bei Druck mit
der weichen Fingerspitze kaum noch oder gar nicht mehr einen
Eindruck in die Celluloidinmasse macht, so ist die Masse genügend
fest; man giesst nun schwachen Alkohol, vielleicht von 50 %, hin-
auf, und am folgenden Tage kann man dann die feste Masse mit
dem Messer aus dem Gefäss lösen und schneiden. Man bekommt
auf diese Weise Präparate, welche schon von Anfang an sehr hart
sind, ohne Luftblasen, und bei denen die Retina entweder keine
oder nur sehr geringe Veränderungen zeigt. Die Consistenz ist
genügend, um mit Alkoholbenetzung des Messers regelmässige
Schnitte von 0,01 mm von nicht zu grossen Stücken zu gestatten.
Und das ist hinreichend dünn, um alles nothwendig zu sehen.
Paraffineinbettung kann ich für die Retina nicht empfehlen.
Dieselbe verändert die Elemente derselben zu stark, um sie für
histologische Untersuchungen brauchbar erscheinen zu lassen.
Die Präparate wurden dann entweder ungefärbt untersucht
oder mit einem beliebigen Kernfärbemittel behandelt. Auf Differe-
zenzialfärbungen habe ich mich bei den vorliegenden Unter-
suchungen nicht eingelassen. Mir schien es sicherer, nach Form-
und Lageverhältnissen zu urtheilen als nach Farbenreaktionen
in einem Organ, in welchem die einzelnen Elemente sich so nahe
stehen und über welches ausgedehntere Erfahrungen über Differe-
zenzfärbungen noch nicht vorliegen.
Osmiumsäure habe ich als Härtungsmittel so viel wie mög-
lisch vermieden, da ich gleich zuerst genügend Gelegenheit zu beob-
achten hatte, wie leicht dieses Mittel zu Täuschungen Veranlassung
bieten kann, indem es manches Vorhandene verschleiert, anderes
nicht Vorhandene vortäuscht, beides im Wesentlichen durch seine
energische härrende Wirkung mit Gerinnselbildung.
Dass es ausserdem wesentlich das Verständniss erleichtert,

Da es mir in den vorliegenden Untersuchungen nicht nur darauf ankam, die Form und Lage der Zellen, sondern auch ihre Grössenverhältnisse wiederzugeben, so wurden alle Zeichnungen mit dem Winkelschen Zeichenprisma in ihren Umrissen ausgeführt, und damit die Vergleichung auch für den Leser eine leichte sei, wurden alle wesentlichen Theile bei einer Vergrösserung gezeichnet und überhaupt für die Abbildungen nur möglichst wenig verschiedene Vergrösserungen gewählt.

Bevor ich nun zu der Beschreibung der Stützelemente bei den verschiedenen Thieren übergehe, will ich erst einiges allgemeinere vorausschicken, um unnöthige Wiederholungen zu sparen und das allgemeine Verständniss der Einzelbeschreibungen zu fördern.

Wie leider nur zu wohl bekannt, sind die beiden „granulirten Schichten“ ein dunkler Punkt in der Anatomie der Retina. Ich habe mich hier mit ihrer Structur auch nicht weiter beschäftigt und kann nur angeben, dass mir die innere granulirte Schicht je nach der Präparationsmethode und dem Thiere bald mehr körnig bald mehr netzförmig erschienen ist, manchmal so klar netzförmig, dass man nur überrascht sein konnte, in anderen Fällen wieder eine sehr deutliche Granulirung zu sehen. Auf den Zeichnungen ist diese Schicht daher im allgemeinen nur andeutungsweise behandelt worden, da es für die gegenwärtige Untersuchung nur auf die Markirung ihrer Lage ankam. Ganz ähnlich habe ich es mit der äusseren granulirten Schicht gehalten, wiewohl hier gemäss ihrer näheren Beziehungen zu den zu untersuchenden Theilen mehr Rücksicht auf die wesentliche Beschaffenheit zu nehmen war. Auch hier kann ich nur sagen, dass die Schicht bisweilen ausgeprägt körnig erschien, dass bisweilen dagegen nur ganz deutlich eine feine körnige Linie durch die bekannten Fusskegel der Stäbchen und Zapfenfasern gebildet wurde, während das übrige ein Flechtwerk von Fasern zu sein schien. Die hier näher zu behandelnden Stützelemente, die concentrischen Stützzellen, haben, wie ich gleich besonders hervorheben will, mit dieser Schicht, meiner Meinung nach, absolut nichts weiter zu thun, als dass sie zum Theil ihre
Fortsätze in sie hinein schicken. Demgemäß sind diese Zellen auch als eine ganz besondere Schicht abgetrennt von der äusseren granulirten zu behandeln. Diese letztere dient im wesentlichen wohl, wie das ja bekannt ist, zur Endausbreitung der Nervenfasern, bevor sie an die Neuroepithelien herantreten und zur Verbindung mit diesen, wenn man die Enden der Kegel noch mit zu der Schicht ziehen will, was meiner Meinung nach indessen durchaus nicht richtig ist, ganz ähnlich wie die innere granulirte Schicht zur Ausbreitung der Fortsätze der Ganglienzellen und zur Verbindung derselben mit den Fortsätzen der inneren Körner, es sind beides Nervenplexusschichten, daher der Name „Plexus basal“ für die äussere durchaus bezeichnend ist. Wie wenig die eigentliche Verbindungsstelle der Nerven mit den Neuroepithelien an den Fusskegeln mit dieser Schicht zu thun hat, sieht man ja schon bei den Thieren, bei denen eine Faserschicht sich zwischen beide einschiebt.

Was die radialen Zellen anlangt, so gehen dieselben bei allen Thieren, die ich untersucht habe, in Uebereinstimmung mit der Ansicht der grossen Majorität der Forscher von der Membrana hyaloidea bis zur Limitans externa. Die Membrana hyaloidea ist eine zum Glaskörper gehörende structurlose Haut, welche den Enden der Stützfasern so nahe anliegt, dass die Grenzen derselben als Abdruck auf ihr zu erkennen sind. Bei der Härting löst sie sich leicht ab und folgt dem Glaskörper, der durch die Här tung schrumpft. Die inneren Endpunkte der Stützfasern, welche kegelförmig anschwellen, verbinden sich mit ihren Rändern zu einer grossen Endplatte, welche die Retina nach innen hin (natürlich nicht lückenlos) abschliesst: Margo limitans. Jede Stützzelle trägt dann an einer Stelle ihres Verlaufs, gewöhnlich in der inneren Körnerschicht einen Kern, der in einer Verbreiterung der Zelle liegt, und endigt an der Limitans externa, welche wohl als Cuticularbildung aufzufassen ist. Diese letztere bildet ein Netz mit

Gehen wir nun zur Beschreibung der Befunde bei den einzelnen untersuchten Thieren über.

I. Fische.

a) Cyclostomata. Petromyzon fluviatilis.

Taf. XXII, Fig. 59 giebt den grössten Theil eines Querschnitts der Retina wieder. Wie man sieht, folgt auf die schmale äussere Körnerschicht und die als feiner Streifen angedeutete Schicht der Enden der Neuroepithelien zusammen mit einigen nicht näher erkennbaren Dingen, welche als äussere granulierte bezeichnet sind (die letztere ist als Schicht bei Petromyzon kaum zu erkennen), eine Schicht von mächtig grossen Zellen, polygonal von Gestalt, oft mehr würzelförmig, und bald darauf eine zweite aus ähnlichen Zellen zusammengesetzt, welche ebenfalls unregelmässig polygonal, manchmal auch mehr kubisch oder parallelepipedisch sind. Beide Zellarten sind feinkörnig und besitzen grosse Kerne mit Kernkörperchen. Dicht an der äusseren Lage finden sich anliegend, zwischen ihr und der äusseren Körnerschicht, mehr oder weniger weit in die granulirte hineinragend kleinere mehr spindelförmige Zellen, welche auch häufig in die Lücken zwischen die grossen

Taf. XXIII Fig. 61 zeigt vier innere kernhaltige Zellen der Fläche nach aus einem Schüttelpräparat. Man sieht, dass die Zellen kurze dicke Fortsätze haben, welche sich an die benachbarten Zellen anlegen, wobei die Zellgrenzen noch deutlich erkennbar sind. Zwischen den Zellen bleiben so Lücken übrig, begrenzt von den Körperrn und Fortsätzen und durch diese treten die Retina radiär durchsetzenden Gebilde. Die Zellen der mittleren Schicht sind ganz ähnlich geformt und aneinander gefügt. Uber die der äussersten Schicht kann ich nur wenig sagen. Ich habe nur einmal auf einem Isolationspräparat Zellen gefunden, welche ihnen zu entsprechen schienen. Taf. XXIII Fig. 62 zeigt dieselben. Sie erscheinen hier spindelförmig, an beiden Seiten freitragend. Die Zellen sind so klein und an Schnitten so schwer zu untersuchen, dass ich nicht mehr über sie aussagen kann. Auf Taf. XXIII Fig. 60 kann man dann an einem Flächenbilde, welches ebenfalls einem Isolationspräparat entstammt, recht gut die verschiedenen Elemente der beschriebenen vier inneren Schichten miteinander vergleichen. Man sieht von innen auf das Stück herauf, und bemerkt so zu oberst lange faserähnliche Gebilde, welche in der Mitte sich verbreitern. Dieselben sind platt, und zeigen auch bisweilen ausser der mittleren stärksten Verbreiterung noch geringere nach den Enden zu. Dieselben liegen dicht zusammen, sich nach allen Richtungen hin schneidend und bilden so einen Filz mit unregelmässigen Lücken. Im ganzen scheinen dieser Fasern nicht sehr viele zu sein, die Schicht erscheint auf dem Querschnitt recht dünn. Darauf folgen dann die inneren kernhaltigen Zellen, von denen eine ganze Anzahl zu sehen ist. Darauf die kernlosen der äusseren Schicht. Es sind dies noch schmalere Fasern als die der inneren, augenscheinlich nicht so flach, in grösserer Menge vorhanden und sich wiederum nach allen Richtungen verfilzend. Es sind die schmalsten derartigen Gebilde, welche mir unver-
ästelt bei meinen Untersuchungen vorgekommen sind. Auf sie folgen dann noch tiefer liegend einige wenige mittlere kernhaltige Zellen.

Die kernhaltigen Zellen scheinen sich in Bezug auf Grösse einigermaassen nach der Dicke der Retina zu richten, wenigstens gilt das für die mittleren und inneren. Ich habe dieselben am grössten und am meisten parallelepipedisch dicht am Opticuseintritt gefunden, nach den Seitenteil.en zu nahm die Grösse ab, und die Form war nicht mehr so regelmässig.

Durch die Lücken zwischen den Zellen treten, wie ich oben schon erwähnte, die radiär verlaufenden Gebilde hindurch. Jene bilden also gewissermaassen die Thore, durch die alles hindurch muss, was aus der inneren in die äussere Körnerschicht will. Demgemäss sieht man häufig die elliptischen äusseren Körner sich diesen Thoren gemäss richten, wie das ziemlich deutlich auch auf der Querschnittszeichnung hervortritt. Ausserdem hängt diese Richtungsannahme allerdings auch wohl damit zusammen, dass durch die Thore die radialen Stützzellen treten und sich kegelförmig von da aus in ihre Aeste auflösen, zwischen denen dann die äusseren Körner liegen. Die letzteren scheinen übrigens bei Petromyzon mitunter auch weit nach diesen Lücken hinzutreten, ja vielleicht noch in dieselben sich hineinzulegen. Es hat mir wenigstens den Eindruck gemacht, als ob die ovalen Zellkerne, welche man häufig am Beginn der Lücke zwischen den mittleren concentrischen Zellen liegen sieht, äussere Körner wären. Bei Petromyzon ist, wie oben schon erwähnt, die äussere granulirte Schicht so wenig ausgebildet, dass man sie als Grenzlinie kaum benutzen kann, und die Elemente liegen im ganzen in der Retina recht unregelmässig. Ich habe die radialen Stützzellen auf den Isolationspräparaten, da diese nicht gut gelungen waren, nicht ordentlich isolirt gesehen, und muss mich daher auf die Schnitte auch in Bezug auf sie beschränken. Danach scheinen es ziemlich dünne glatte faser ähnliche Zellen zu sein, deren Kernanschwellung an sehr verschiedenen Stellen liegen kann. Entweder in der inneren granulirten oder an irgend einer Stelle der inneren Körnerschicht. Ob auch zwischen den concentrischen Stützzellen, das war mir nicht möglich zu entscheiden. Es ist dies eine Eigenthümlichkeit von Petromyzon, die vielleicht auch für die tiefe, ursprüngliche Stellung dieses Thieres spricht, dass eine solche Willkür in dieser

Studien zur vergleichenden Histologie der Retina.

marinus wiedergibt, müssen auch bei diesem Thiere die Verhältnisse ähnliche sein.

Maasse:

*) äuss. c. k. Stz. Länge ca. 10 μ.
 Durchm. „ 14—20 μ.
 Dicke „ 12—16 μ.

inn. „ „ „ Durchm. „ 20—27 μ.
 Dicke „ 12—16 μ.

inn. c. kl. Stz. Länge „ 114—156 μ.
 Breite in d. Mitte 6—8 μ.

r. Stz.: Länge ca. 114 μ.

b) Plagiostomen.

1) Acanthias vulgaris.

Die Verhältnisse der kernhaltigen concentrischen Zellen sind hier denen bei Petromyzon noch ziemlich ähnlich. Man findet wiederum, wie auf Taf. XXIII, Fig. 64, welche einen Theil eines Querschnitts der Retina darstellt, sichtbar, die drei Schichten; die äussersten Zellen habe ich hier nur als Kerne gesehen, welche theils nach aussen von den mittleren, theils in den Lücken zwischen denselben nach dem Ausgange derselben zu lagen; die mittleren sind dicke massige Gebilde, und ähnlich, wenn auch weniger massig, die inneren. Die mittleren Zellen sind hier weniger dick im Verhältniss zur Breitenausdehnung wie bei Petromyzon, man wird das erkennen aus dem Querschnittbilde und aus der Flächenansicht einer solchen Zelle Taf. XXIII, Fig. 66. Der Flächenausdehnung nach sind sie grösser als die von Petromyzon, sie haben wieder kurze Fortsätze, mit denen sie zusammenhängen. An den Berührungsstellen kann man wiederum die Zellgrenzen wahrnehmen. Zwischen den Zellen liegen die bekannten Lücken. Eigenthümlich ist es, dass diese Zellen mitunter, z. B. nach Här tung in Acet. pyrolign. ein sonderbar streifiges Aussehen bekommen, so als wenn sie aus lauter feinen Fächchen zusammengesetzt wären, die sich unter spitzen Winkeln kreuzten. Ein Bild, das sehr erinnert an die bekannten Formen der Art, welche Ganglienzellen häufig darbieten. Bei Alkohol tritt die Erscheinung weniger hervor und noch weniger oder gar nicht bei Müller'scher Flüssigkeit, worin sie einfach körnig aussehen. Das faserige Bild ent-

*) Betreffs dieser Abkürzungen verweise ich auf die Erklärung der Abbildungen.

Weit mehr verändert sind die inneren Zellen. Sie sind zu platten, vielstrahligen, kernhaltigen Gebilden geworden, mit mächtig langen Fortsätzen, welche sich wiederum mit denen benachbarter Zellen verbinden. An den Stellen, an denen Theilungen der Fortsätze vor sich gehen, zeigt die Zelle gewöhnlich eine leichte Anschwellung. Die zwischen den Fortsätzen bleibenden Lücken sind sehr gross.

Kernlose Zellen habe ich bei Acanthias nicht auffinden können.

Die radialen Stützzellen sind schön entwickelt. Taf. XXIII, Fig. 65 zeigt eine solche, welche aber etwas vor dem Ende an der Lim. ext. abgerissen ist. Ihr Kern liegt regelmässig in der inneren Körnerschicht. Ihr äusseres Ende ist glatt, tritt durch die Lücken der concentrischen Zellen hindurch, theilt sich dicht an der inneren Grenze der äusseren Körner in eine Anzahl feiner Aeste, welche einen Haufen äusserer Körner zwischen sich fassen, so dass man sehr gewöhnlich auf Isolationspräparaten diesen ganzen äusseren Theil mit Körnern erfüllt findet. Auf der gezeichneten Zelle erblickt man zwischen diesen äusseren Verzweigungen dünne Membranen ausgespannt, welche einen grossen Theil jedes Astes mit dem benachbarten verbinden. Solche Häute sind häufig zu beobachten, kommen aber nicht allen Fasern zu. Sehr eigenthümlich ist das Verhalten des inneren Endes der Zelle. Dasselbe zerfällt nämlich ziemlich bald unterhalb des Kerns in eine Anzahl langer feiner Aeste, welche die innere granulirte Schicht glatt durchsetzen, um dann schliesslich mit kleinen kegelförmigen Anschwellungen oder unten spitz zulaufend zu endigen. Mitunter geht von dem inneren Ende vor der Theilung auch noch der eine oder andere kurze Fortsatz ab, wie auch an der abgebildeten
Zelle einer zu sehen ist. Dass diese Stützzellen mit benachbarten Zellen vermittelst ihrer Fortsätze sich verbinden, habe ich nie beobachtet.

Maasse:

\[m. \text{ c. k. Stz. = Durchm. circ. } 60 \mu, \text{ Dicke } 8-10 \mu. \]
\[\text{r. Stz. = Länge circ. } 200 \mu. \]

2) Mustelus vulgaris.

Die radialen Stützzellen zeigten hier sehr vielfach (indess durchaus nicht alle) eigenthümliche, platte Verbreiterungen, welche ganz plötzlich aus dem schmalen glatten Körper hervorgingen. Dieselben erschienen leicht granulirt, und auf den ersten Blick sah es öfter so aus, als ob die Zellen mehrkernig wären, da diese körnigen Verbreiterungen den eigentlichen Kernanschwellungen ähnlich sahen. Bei genauerer Untersuchung konnte man aber stets nachweisen, dass nur ein Kern vorhanden war. In Taf. XXIII, Fig. 67 habe ich ein Stück einer solchen Zelle dargestellt.

3) Torpedo ocellata.

Herr Prof. Merkel hatte die Güte, mir mehrere Augen von Torpedo ocellata zur Untersuchung zu übergeben, welche er selbst frisch in Alkohol gelegt hatte. Es liessen sich von diesen Augen auch vermittelst längeren Schüttelns in der Schüttelmaschine Isolationspräparate herstellen.

Taf. XXIII, Fig. 68 zeigt einen Theil eines Querschnitts der Retina. Man sieht die dichtere Reihe der äusseren Körner, eine äussere granulirte Schicht ist wie bei Acanthias eigentlich nicht vorhanden. Unmittelbar an den unteren Enden der Körner bemerkt man einige grosse rundliche Kerne, welche in grösseren Entfernungen von einander gelegen sind und im wesentlichen in dem Raum zwischen den unteren Enden der Körner und den grossen kernhaltigen Zellen liegen, diesen ganz nahe kommend,
zum Theil aber auch noch zwischen die Körner hineinragen. Die Entfernungen zwischen den Kernen sind verschieden gross, ungefähr entsprechen sie den Kernabständen der grossen Zellen. Ich halte diese wieder für die äusseren concentrischen Stützzellen. Auf diese folgen die grossen kernhaltigen concentrischen Zellen (mittlere und innere) in den bekannten zwei Lagen. Beide sind sehr platt geworden, der Kern tritt als deutliche Anschwellung über den Zellkörper hervor. Taf. XXIII, Fig. 70 zeigt eine der mittleren Zellen isolirt der Fläche nach. Dieselbe besitzt einen grossen, ungefähr kreisförmigen Kern mit deutlichem Kernkörperchen, einen platten, granulirten Körper und massig lauge Fortsätze, an denen an einer Seite noch Stücke von solchen einer benachbarten Zelle ansitzen. Eine Zelle aus der inneren Schicht, an der ebenfalls noch ein Stück einer Nachbarzelle festsetzt, zeigt Taf. XXIII, Fig. 72. Man sieht, dieselbe ist grösser, mehr in die Länge gestreckt und besitzt längere Fortsätze als die vorige. Taf. XXIII, Fig. 71 lässt dann an einer im Profil gesehenen Zelle, von der ich nicht sagen kann, ob sie der mittleren oder inneren Schicht angehört, wahrscheinlich aber der ersteren, deutlich die Dünnheit der Zellplatte erkennen. Vergleicht man die eben besprochenen Bilder mit denen der Zellen auf dem Querschnittbilde, welches bei derselben Vergrösserung gezeichnet worden ist, so wird man unschwer erkennen, dass die Entfernung der Kerne auf der Querschnittzeichnung mitunter geringer ist, als der Entfernung zweier Zellen entsprechen würde, derartig neben einander gelegt, dass die Enden der Fortsätze sich gerade berührten. Es ist daher wohl wahrscheinlich, dass häufiger die Zellplatten einer Schicht sich über einander schieben, wie wir das deutlich ausgesprochen später wieder finden werden. Ob ausser diesen kernhaltigen Zellen noch andere kernlose existiren, ist mir bei diesem Thiere nicht ganz klar geworden. Wenn solche vorhanden sind, können sie jedenfalls nur ganz gering an Menge sein und müssen sehr feine Fasern darstellen. Auf Taf. XXIII, Fig. 73 sieht man einige Zellen der inneren Schicht von einem Schüttelpräparate und bemerkt, dass über sie hin feine Fasern ziehen, ebenso sieht man faserähnliche Gebilde auf Taf. XXIII, Fig. 69 ebenfalls aus einem Schüttelpräparat, hier unmittelbar anliegend einer äusseren Zelle. Ob diese Fasern nun aber wirklich als kernlose concentrische Zellen aufzufassen sind, oder etwelse andere faserige Gebilde
sind, an denen es ja in der Retina nicht mangel, das habe ich nicht zu entscheiden vermocht.

Da die Lücken zwischen den Zellen recht gross sind, so ist ein so deutliches Richten der äusseren Körner nicht vorhanden.

Die durch die Lücken tretenden radialen Zellen gehen an ihrem äusseren Ende unter ziemlich spitzen Winkeln in ihre Aeste auseinander, ihre Kerne liegen in der inneren Körnerschicht, durchschnittlich ganz nahe an der inneren granulirten. Ihre inneren Enden zeigen wieder einen frühen Zerfall in einer Anzahl feiner Aeste, welche als solche glatt die granulirte Schicht durchsetzen, um dann am Ende kegelförmig anzuschwellen und zu verschmelzen. Doch scheinen nicht alle Zellen in der Beziehung sich gleich zu verhalten, ich habe wenigstens nach der Ora serrata zu auf Querschnitten auch nicht getheilte Zellen in grösserer Anzahl gesehen.

Maasse:

m. e. k. Stz.: längster Durchm. c. 52 μ.
in. e. k. Stz.: " " 73—118 μ.
r. Stz.: Länge 118—101 μ.

e) Ganoidei.

Accipenser sterio.

Von Accipenser sturio habe ich eine Anzahl von Augen untersucht. Taf. XXIV, Fig. 74 und Fig. 75 zeigen Querschnittsbilder eines Theiles der Retina nach Härtung in Müllerscher Flüssigkeit. Man sieht leicht, dass, wie Dogiel (28) richtig angiebt, die äusseren Körner noch theilweise die Limitans ext. überragen, ein Verhalten, das übrigens bei sehr vielen Thieren vorkommt. Auf die Körnerschicht folgt eine im allgemeinen radiär streifige Partie, gebildet durch die Ausstrahlungen der verästigten radialen Zellen und die Enden der Neuroepithelien bis zu der leicht punktierte Reihe der Fusskegel. Ziemlich unmittelbar an dieser anliegend erscheinen dann in vielen Fällen sofort grosse, massige, körnige Zellen mit grossen rundlichen Kernen, an manchen Stellen schieben sich aber noch kleinere Zellen ebenfalls mit grossen Kernen ein, auf welche dann erst jene grossen Zellen folgen. Die granulirte Schicht ist auch hier nur wenig entwickelt. Sehr vielfach liegen diese kleineren Zellen an solchen Stellen, an welchen zwei grosse mit Ausläufern zusammenstossen und so mehr
Platz lassen, da sie an diesen Stellen weniger dick erscheinen. Die grossen Zellen selbst sind ziemlich unregelmässig gestaltet, liegen bisweilen in einer Schicht, schieben sich aber auch über- einander, so dass gewaltige Massen an manchen Stellen entstehen. Diese Anhäufungen können so dick werden, dass dieselben, wie man auf Taf. XXIV, Fig. 75 bemerkt, fast durch die ganze innere Körnerschicht hindurchreichen. Die reichen aber nicht ganz hindurch, sondern es legen sich auf ihrer inneren Seite noch neue Zellen an, welche dann allerdings ganz hindurchgehen und sich mit Theilen ganz unmittelbar an die innere granulirte anschmiegen. Diese inneren Zellen sehen auf Präparaten aus Müller'scher Flüssigkeit weniger stark granulirt aus, heller, glänzender, wie das etwas stark ausgeprägt, auf den Figuren wiedergegeben ist. Bei Behandlung mit Osmiumsäure sehen übrigens beide Zellarten ziemlich gleich dunkel aus; in Methylmixturen sind die äusseren Zellen grobkörniger als die inneren, welche sehr feinkörnig erscheinen. Diese helleren Zellen sind nun dünner, gestreckter als die vorigen und besitzen lange Fortsätze. Mit diesen reichen sie oft von der inneren granulirten bis an die äusseren Zellen oder deren Nähe hin. Auch diese Zellen besitzen grosse rundliche Kerne mit deutlichen Kernkörperchen. Auf den Abbildungen sieht man mehrfach auch Stücke solcher Zellen, welche, die wunderlichsten Formen bildend, in dem leeren Raume liegen. Dieser Raum zeigt sich nun sehr vielfach bei derartigen Präparaten erfüllt mit einer granulirten Masse, einer geronnenen Substanz, welche auch auf der Abbildung Taf. XXIV, Fig. 74 angedeutet ist. Da die grossen massigen körnigen Zellen oft ähnlich gekörnt sind und sehr dünn durchsichtig auf den feinen Schnittpräparaten, so ist es mitunter gar nicht leicht zu sagen, wo eine Zelle aufhört und die geronnene Substanz beginnt. Diese drei oben beschriebenen Zellarten halte ich nun wieder für die drei Lagen der concentrischen Stützzellen. Dass die mittleren und inneren denselben entsprechen, scheint mir zweifellos zu sein, ein Zweifel könnte nur bestehen betreffs der äusseren. Dogiel (28) gibt in seiner sehr eingehenden Beschreibung der Stör-Retina an, dass an derselben Stelle, an welcher meine äusseren Zellen liegen, sich subepitheliale Ganglienzellen fänden. Es ist der Beschreibung und Abbildung nach durchaus wahrscheinlich, dass er dieselben Zellen meint, wie ich. Er beschreibt sie als mit einer massigen Anzahl
von Ausläufern versehene Zellen, welche sie nach aussen, innen, und den Seiten hin entsenden. Die seitlichen sind die zahlreichsten, der innere liegt immer mit den Bündeln der Radialfasern zusammen, und kann daher auf Querschnitten nicht gesehen werden und der äussere ist sehr kurz, wird von den Neuroepithelien verdeckt und ist daher auf Querschnitten der Retina auch nicht zu sehen. So erscheinen die Zellen dann auf Querschnitten fortsatzlos, nach aussen convex. Nun ist es ja recht schwer nur nach der Form zu beurtheilen, ob eine Zelle der Retina eine Ganglienzelle ist oder nicht, namentlich bei diesen niederer Thieren, das beweist schon der Umstand, dass so viele Verwechselungen hier vorgekommen sind und die concentrischen Stützellen zuerst meistentheils für nervöse Gebilde gehalten worden sind. Dass diese Zellen also Fortsätze besitzen und ganglienähnlich aussehen, würde noch kein Grund sein, sie dafür ohne weiteres zu halten. Nun spricht ihre Lage entschieden gegen Gangliennatur, denn der Stör wäre darnach zunächst das einzige Wesen, welches an dieser Zelle Ganglien besässe. Lasses es sich wirklich nachweisen, dass diese Zellen Ganglienzellen sind, so würde es mir in hohem Grade wahrscheinlich sein, dass auch bei anderen Thieren derartige Zellen vorkommen, und dann würden ja die von mir bis jetzt als äussere concentrische Stützellen beschriebenen Gebilde zunächst in Frage kommen. Nun lassen sich solche aber bei manchen Thieren ganz bestimmt als nicht nervös und zu den concentrischen gehörig nachweisen, bei den bisher beschriebenen ferner haben sie ebenfalls keine besondere Aehnlichkeit mit Ganglienzellen, nur hier beim Stör erscheinen sie diesen ähnlich wegen der Massigkeit ihres Körpers. Diese Massigkeit besitzen aber alle concentrischen Zellen dieses Thieres, und so komme ich denn zu dem Schluss, dass es immer noch das Wahrscheinlichste ist, dass sie zu den concentrischen Zellen zu rechnen sind. Die horizontal verlaufenden Fortsätze würden hierbei durchaus natürlich sein und was den äusseren und inneren Fortsatz anlangt, so ist die Beschreibung derselben eine so seltsame, dass ich mir noch nicht denken kann, dass sie ganz richtig ist. Bei Zerzupfungspräparaten aus Osmium kann man alles Mögliche und Unmögliche zu sehen bekommen, Bilder, die man manchmal mit dem, was man von derselben Retina bei anderen Präparationsmethoden sieht, absolut nicht ver- einigen kann, so dass ich es für sehr schwer halte, nach der-

In Bezug auf die anderen grossen Zellen ist mir die Beschreibung von Dogiel auch nach einer Richtung hin nicht ganz verständlich. Er beschreibt dieselben als sternförmige Zellen in zwei verschiedenen Lagen, wovon die der äusseren Lage kürzere Fortsätze besitzen als die der inneren. Die Fortsätze der Zellen der äusseren Lage legten sich an einander, liessen aber noch Zellgrenzen erkennen; die der inneren gingen unmittelbar in einander über. Ausser diesen nimmt er nun aber noch die „tangentialen Füllerumzellen“ W. Müller’s an, von denen er sagt, dass man ihre Kerne wohl in der geronnenen Lymphe zwischen den sternförmigen Zellen schen könne, dass es ihm aber nicht gelungen sei, die Form der Zellkörper eben wegen der bedeckenden Lymphgerinnsel zu erüiren. Mir scheint, dass diese sternförmigen Zellen eben die „tangentialen Füllerumzellen“ sind, und wenn Dogiel noch Kerne in der geronnenen Lymphe bemerkt hat, so sind das höchst wahrscheinlich solche von tangentialen Füllerumzellen gewesen, deren Grenzen, wie ich oben schon angeführt, in Folge der Lymphgerinnsel oft schwer festzustellen sind, aber diese Zellen sind dann ebenfalls solche sternförmige gewesen. Was nun die genauere Form dieser Zellen anlangt, so habe ich auf Taf. XXII, Fig. 1b eine mittlere abgebildet. Wie man sieht, schliesst sich dieselbe in ihrer Gestalt durchaus den bisher von anderen Fischen beschriebenen an, ist aber weit grösser, und ähneln auch einigermaassen der Abbildung von Dogiel (28. Fig. 64). Auch dass zwischen den Fortsätzen benachbarter Zellen bei der Verbindung noch Zellgrenzen sichtbar bleiben, stimmt mit dem oben Gesagten und mit Dogiel’s Angabe.

Eine Zelle der inneren Schicht ist in Taf. XXII, Fig. 1a wiedergegeben. Wie man bemerkt, ist die Zelle mächtig gross und hat sehr lange, relativ dünne Fortsätze. Soweit stimme ich auch mit
der Abbildung von Dogiel (28. Fig. 65) ziemlich überein, dagegen finde ich die Zellfortsätze nicht so gleichmässig glatt, wie er sie zeichnet, sondern mit Anschwellungen versehen, namentlich an den Stellen, an denen Äste abgehen. In dieser Beziehung gleichen diese Zellen sehr denen von Acanthias, bei welchen, wie ich oben hervorhob, auch so sehr lange Fortsätze mit Anschwellungen an den Stellen des Abtritts von Ästen sich regelmässig vorfinden. Nur sind die Zellen des Störs wieder massiger als die des Hais entsprechend dem Typus der anderen. Taf. XXII, Fig. 2 zeigt noch zwei derartige Zellen in Verbindung mit einander. Mit H. Müller möchte ich annehmen, dass die Ganglienzellen, welche Leydig (5. Taf. I. Fig. 5) aus der Stör-Retina abbildet, solche Zellen gewesen sind, die ja in der That gar nicht zu übersehen waren und viel mehr in's Auge fielen als die relativ kleinen, wirklichen Ganglienzellen.

Was die kernlosen concentrischen Zellen betrifft, so habe ich dieselben auf Querschnitten nicht nachweisen können. Eine dicke besondere Lage scheinen sie also nicht zu bilden. Dagegen habe ich auf den zerschüttelten Präparaten aus Methylmixturen zwei Gebilde gefunden, welche durchaus den Eindruck derartiger Zellen machten. Der Leser wird dieses noch mehr finden, wenn er die Formen der entsprechenden Zellen von den noch später zu beschreibenden Fischen vergleichen will. Es sind, wie Taf. XXII, Fig. 3 a. b zeigt, ganz platte, spindelförmige Gebilde, welche in der Mitte eine ziemliche Breite besitzen.

Was die radialen Zellen anlangt, so habe ich von diesen in Taf. XXII, Fig. 4 a. b. c. d vier Formen abgebildet. Wie man bemerkt, sind es im allgemeinen feste, glatte, faserähnliche Gebilde. Die Kernanschwellung liegt, wie die Querschnitte Taf. XXIV, Fig. 74. 75 zeigen, dicht an der inneren granulirten an, das innere Ende durchsetzt glatt und ungetheilt diese Schicht, um mehr oder weniger stark konisch am Ende anzuschwellen. Gewöhnlich ist diese Anschwellung nur nach einer Seite stärker, so dass man auf eine längliche Fussplatte heraufsieht (α), welche scheinbar in der Fortsetzung der Faser liegt. Auch Dogiel bildet (28. Fig. 62) die Fussplatten an der Limitans so in die Länge gezogen ab. Am äusseren Ende theilt sich die Zelle, an der Öffnung der Lücke zwischen den concentrischen Zellen angelangt, in eine Anzahl kurzer Ästchen, welche die kurze Strecke bis zur Limitans mehr

Einer Eigenthümlichkeit der radialen Stützfasern habe ich hier dann noch Erwähnung zu thun, die ich bis jetzt nur beim Stör gefunden habe. Von der Stelle der Kernanschwellung nämlich gehen vielfach feine Fasern aus, welche nach innen ziehend jedenfalls in die innere granulirte Schicht eintreten müssen, da ja die Kerne dieser Schicht schon dicht anliegen oder doch in ihrer Nähe sich befinden. Dabei kann nun die Kernanschwellung auch mehr oder weniger stark als Fortsatz aus der Faser hervorragen, so dass unter Umständen ein längeres Stück zwischen dem Kern und dem faserähnlichen Hauptzellkörper sich einschalten kann. Taf. XXII, Fig. 4a zeigt eine Zelle, bei der nur wenige Fäserchen von der sonst ganz wie gewöhnlich aussehenden Zelle abtreten; denkt man sich diese fort, so erhält man eine radiale Stützzelle, wie sie meistens beim Stör vorkommt. In 4b ist der Kern schon weiter herausgerückt, noch mehr in 4c und Fig. 4d zeigt einen deutlichen langen Stiel. Da ich diese eigenthümlichen Fäserchen sonst, wie gesagt, noch nicht gefunden habe, so vermag ich eine Deutung derselben nicht zu geben. Die einzigen nicht nervösen Gebilde, welche sonst Fortsätze in die innere granulirte Schicht hineinsenden, sind ja die sogenannten Spongioblasten. Ob
solche beim Stör vorhanden sind, ist nicht leicht zu sagen. Man sieht in der inneren Körnerschicht überhaupt nur wenig Körner, wie das auch Dogiel angiebt. Über die Bedeutung der Spongio-
blasten weiss man noch nichts, in Folge dessen ist es auch nicht möglich zu sagen, ob man annehmen kann, dass sie durch der-
artige Anhänge an Stützzellen vertreten werden.

Maasse:

m. e. k. Stz.: längster Durchm. c. 85 μ.
inn. e. k. Stz.: " " 174—414 μ.
r. Stz.: Länge 104—127 μ.

Andere Ganoiden standen mir leider zur Untersuchung nicht zu Gebote.

d) Dipnoi.

Von Herrn Prof. Ehlers wurden mir je ein Auge von Cerato-
todus und Protopterus zur Verfügung gestellt. Dieselben waren in schwachem Alkohol conservirt, und wenn sie auch nicht für alle Details einer Retina-Untersuchung zu benutzen waren, so waren sie doch hinreichend gut conservirt, um das für die vor-
liegende Untersuchung nothwendigste constatiren zu lassen.

1) Ceratodus Forsteri.

Aehnlich wie Torpedo sich an Acanthias anschliesst, scheint es Ceratodus in Bezug auf den Stör zu thun. D. h. während die übrigen Retina-Elemente (z. B. die Stäbchen und Zapfen) noch ganz den Typus der Ganoiden zeigen, haben sich die kernhaltigen concentrischen Stützzellen aus jenen massigen Elementen des Störs zu platten, zarteren Gebilden umgewandelt und wie bei Torpedo, so treten auch hier die äusseren concentrischen Zellen jetzt als grosse runde Kerne deutlich hervor. In Folge der Art der Con-
servirung des Auges habe ich die einzelnen Elemente nicht gut isolirt sehen können, indessen so weit man die Formen der Zellen nach Flächenschnitten beurtheilen konnte, war auch insofern eine Annäherung an die Formen von Torpedo zu bemerken, als die inneren Zellen nicht so sehr gross waren, und somit der Unter-
schied in der Grösse der mittleren und inneren nicht so bedeutend wie beim Stör. Also auch in dieser Hinsicht steht Torpedo dem Hai ganz ähnlich gegenüber wie Ceratodus dem Stör. Wie man
auf Taf. XXIV, Fig. 79, welche ein Stück eines Querschnitts der Retina darstellt, und auf Tafel XXIV, Fig. 80, welche ein Stückchen der Retina aus einem Zerzupfungspräparat wiedergiebt, leicht erkennen wird, liegen die mittleren und inneren concentrischen Zellen einander ziemlich dicht an, und ebenso fügen sich aussen unmittelbar die grossen Kerne der äusseren Zellen an, welche hier schon fast ganz zwischen die Endpartien der Neuroepithelien hineinragen. In der That geht die Grenzlinie der Basen der Fusskegel der Sehzellen derartig an den Kernen vorüber, dass nur ein kleiner Theil nach innen darunter hervorrückt. Es ist dieses Verhältniss also auch ähnlich wie beim Stör, bei dem die Zellen verschieden weit in die Schicht der Sehzellen hineinragten, aber immer noch mit ihrem inneren Ende, mit dem sie ja den mittleren Zellen unmittelbar anlagen, daraus hervorrugten.

Ob hier kernlose Zellen vorhanden sind, ist mir wieder zweifelhaft geblieben. Es ist die Feststellung derselben, wenn sie nicht in dicken Schichten vorkommen, immer sehr schwer, wenn man nicht gute Isolationspräparate anfertigen kann, und auch mit Hülfe dieser ist der Nachweis oft noch recht mühsam und zeitraubend. So kann ich darüber nur sagen, dass ich bisweilen faserähnliche Bildungen, welche eventuell als solche gedeutet werden konnten, bemerkt habe, so auch auf jenem Stückchen, welches Taf. XXIV, Fig. 80 abgebildet worden ist, zwischen äusseren concentrischen Zellen und mittlern. Doch kann ich Sicheres darüber nicht aussagen.

Wie man auf beiden Zeichnungen bemerkt, sind die Elemente der Retina sehr gross. Die Innenglieder der Stäbchenzellen erscheinen zum grossen Theile stark aufgequollen, wohl als Folge der mangelhaften Conservirung. Die Zapfen besitzen Oeltropfen wie die des Störs.
2) *Protopterus annectens.*

Dieses Thier ist sehr interessant, da es auch in seiner Retinaformation den direkten Uebergang von den Fischen zu den Amphibien bildet. Die Elemente der Retina, namentlich auch ihre Kerne, sind mächtig gross. Die Stäbchen und Zapfen schliessen sich noch ganz an Ceratodusformen an. Die Schichten der concentrischen Zellen zeigen auf's Deutlichste den Amphibientypus, wie wir ihn später noch genauer kennen lernen werden. Man bemerkt bei diesem Thier (siehe Taf. XXIV, Fig. 76, welche einen Theil eines Querschnittes der Retina darstellt) zuerst eine deutliche breite Schicht, welche ihrer Lage nach als äussere granulirte zu bezeichnen wäre, wenn sie auch in Wirklichkeit nur wenig granulirt erschien und mehr einen streifigen Typus zeigte. An dieser liegen nach aussen unmittelbar grosse rundliche Zellkerne an, welche aber durch grosse Zwischenräume, die nicht gleichmässig sind, getrennt werden. Sie sind von den äusseren Körnern ziemlich leicht durch ihre runde Form, den Mangel von Fortsätzen, und ihre etwas tiefere Lage zu unterscheiden. Ihre inneren Enden liegen wieder noch etwas nach innen von den Fusskegelbasen, oder höchstens in einer Linie mit diesen. Ich halte diese runden Kerne wieder für den Ausdruck meiner äusseren concentrischen Zellen. An der inneren Seite der granulirten Schicht liegen ebenso ovale, quergestellte Kerne, auch in unregelmässigen Entfernungen von einander. Diese Kerne liegen bisweilen der inneren Grenze der Schicht einfach an, bisweilen ragen sie ein Ende in dieselbe hinein, liegen dann also etwas weiter nach aussen als die anderen. Auf Isolationspräparaten kann man mitunter nachweisen, dass diese Kerne an ihrem äusseren, platteren Theile einen membranartigen Zellkörper tragen, wie Taf. XXIV, Fig. 77 es zeigt. Diese Zellplatte ist nur klein, namentlich im Vergleich zu dem riesigen Kern und wird daher leicht übersehen. Das Bild erinnert sehr an die eine in Taf. XXIII, Fig. 71 dargestellte Zelle von Torpedo, nur dass diese weit grösser ist und die Zellplatte dicker. Ich halte diese Zellen für meine mittleren und inneren concentrischen Zellen, und halte es für wahrscheinlich, dass jene erst angegebene Ungleichheit der Lage dieser Zellen zu der granulirten Schicht, in welche die einen weiter hineinragen als die anderen, auf die Anordnung der Zellen in zwei Reihen zurückzuführen ist, entsprechend den mittleren und inneren Zellen. So
kann man deren Vorhandensein also nachweisen, aber die Zellen erscheinen rudimentär gegenüber der mächtigen Entwicklung, welche wir bisher kennen gelernt haben. Dass die eventuellen Fortsätze dieser Zellen anastomosieren, ist ja möglich, bei der Kleinheit der Zellen aber unwahrscheinlich.

Ich erwähnte schon oben, dass die äussere granulirte Schicht hier ein durchaus faseriges Gepräge hat. Es liegen in ihr, soweit man das nach Zerzupfungspräparaten beurtheilen kann, längere, ziemlich starke Fasern, welche ich auf den zwei Abbildungen Taf. XXIV, Fig. 76 und Fig. 78 angedeutet habe. Dass dieselben nervös sind, glaube ich nicht; dazu sind sie zu stark, auch haben sie nicht das Aussehen von Nervenfasern, ich halte es für wahrscheinlich, dass es kernlose concentrische Zellen sind, und dass wir in ihnen auch bereits jene Elemente zu erkennen haben, welche von den Amphibien an durch alle Klassen der Wirbelthiere, wie wir sehen werden, zu verfolgen sind.

Die grossen runden Kerne an der äusseren Seite der inneren granulirten Schicht, welche sich durch ihre Grösse von den übrigen inneren Körnern unterscheiden, kann man wohl als Spongioblasten deuten.

Da ich weder von Ceratodus noch von Protopterus gute isolirte Elemente erhalten habe, so muss ich auf Maassangaben verzichten.

e) Teleostei.

a) Physostomi.

1) Hecht, Esox lucius.

Die Knochenfische haben einen besonderen Typus der Bildung der concentrischen Zellschichten, welcher sich ungemein deutlich nach allen Richtungen hin entwickelt beim Hecht ausspricht, so
Studien zur vergleichenden Histologie der Retina. 343

fach zerstreut liegen, bald nahe den Fusspunkten, bald in der mittleren Partie, bald nahe der Limitans, welche ihrer Form nach sicher nicht zu den Sehzellen gehören, doch bin ich ausser Stande sie näher zu deuten.

Isolationspräparate lehren nun über die Form der in den concentrischen Schichten enthaltenen Gebilde Folgendes.

Die Elemente der äussersten Schicht sind die kleinsten. Es sind ziemlich platte, nach der kernhaltigen Mitte zu leicht anschwellende, mässig stark granulirte Zellen, mit einer grösseren oder geringeren Anzahl von Fortsätzen versehen, welche mit denen benachbarter Zellen sich verbinden. Taf. XXIV, Fig. 91 zeigt eine Gruppe solcher Zellen in Umrisszeichnungen und lässt die zahlreichen kleinen Lücken erkennen, die zwischen ihnen liegen. Wie bei allen diesen Zellschichten scheint auch hier häufig der Fall vorzukommen, dass Aeste der Zellen auch nach innen abgehen, um sich entweder mit doppelt liegenden Zellen derselben Schicht oder mit denen einer anderen zu verbinden. Man sieht, der Typus dieser Zellen ist vollkommen der der sonstigen concentrischen Zellen, und wenn die Zellen beim Stör nach dogiels Beschreibung im Wesentlichen Randfortsätze besassen, so passt das zu diesen sehr gut.

Die Zellen der mittleren Schicht sind weit grösser als die vorigen und stimmen in Grösse und Beschaffenheit recht gut mit den früher beschriebenen. Taf. XXIV, Fig. 93 zeigt sie in Umrisszeichnungen in der halben Vergrösserung wie die äusseren, Taf. XXII, Fig. 15a in geringerer Vergrösserung. Man bemerkt ausserdem, dass bei den in letzterer Abbildung dargestellten die Fortsätze noch kürzer und damit die Lücken zwischen den Zellen noch kleiner sind. Diese Abbildung stimmt recht gut überein mit der, welche Schwalbe giebt (16. p. 394). Es scheint also die Form dieser Zellen leichten Modificationen, die sich wahrscheinlich nach den mehr in der Mitte oder mehr seitwärts befindlichen Lagerungsorten richten werden, unterworfen zu sein. Der Zellkörper ist wieder granulirt, platt, aber meist dicker als der Kern. An den Stellen, an denen die Fortsätze sich aneinanderfügen, sind häufig Zellgrenzen sichtbar, bisweilen fehlen dieselben aber auch.

Die inneren Zellen sind platter als die vorigen, auch granulirt, zeigen eine Kernanschwellung, sind grösser und besitzen längere Fortsätze, die sich wieder miteinander verbinden, ohne dass
man Zellgrenzen wahrnehmen kann. Taf. XXIV, Fig. 92 zeigt der-
artige Zellen in Umrisszeichnungen in denselben Maassstabe wie
die anderen, und Taf. XXII, Fig. 15 b in geringerem Maassstabe ein
Zellnetz mit verschiedenen übereinander befindlichen Lagen bildend.
Diese Neigung sich zu schichten erklärt es auch, warum man oft
diese Schicht doppelt auf dem Querschnitte sieht, und warum die
verschiedenen Autoren beim Hecht oft verschieden viele Schichten
angeben.

Wie man bemerkt, sind die Beschreibungen, welche verschiede-
dene Forscher, so Retzius, Schwalbe, Reich, von diesen Theilen
der Hechtretina gegeben haben, im Wesentlichen naturgetreu ge-
wesen, nur die äusseren Zellen scheinen ihnen entgangen zu sein.

Die noch weiter nach innen liegende Schicht der kernlosen
concentrischen Zellen ist auch schon mehrfach gesehen worden,
doch sind ihre Elemente bis jetzt noch nicht hinreichend isolirt
wloggedin, um sie genau zu erkennen. Taf. XXII, Fig. 16 stellt ein
solches Element dar. Es sind, wie man sieht, sehr lange, platte, spin-
delförmige Gebilde, welche an den beiden Enden recht fein aus-
laufen. Die Länge ist in der That ganz ausserordentlich, und be-
trägt z. B. für die abgebildete Zelle ungefähr 420 μ, also beiha
einen halben Millimeter. Diese Zellen bilden nun, sich nach allen
Richtungen durchflechtend, einen dichten Filz, ganz ähnlich wie
ihm Taf. XXII, Fig. 10 von derselben Schicht aus der Retina des
Brachsen darstellt. Auf diese Schicht folgt dann weiter nach innen
erst die eigentliche innere Körnerschicht.

In dieser sieht man auf dem Querschnittsbilde Taf. XXIV, Fig. 88
leicht die Radialzellen mit ihren Kernanschwellungen, welche un-
gefähr die Mitte der Schicht bevorzugen. Auch hier liegen, wie
beim Stör, die radialen Zellen vielfach in Gruppen und dann na-
türlich auch die Kerne auf einem Haufen, aber es kommen auch
viele einzeln verlaufende Zellen vor. Die Länge dieser radialen
Elemente ist gemäss der bedeutenden Dicke der Retina eine be-
trächtliche und variiert natürlich erheblich zwischen Mitte und Rand.
Der äussere Theil der Zellen ist zunächst glatt, theilt sich wieder
am Ausgange der Lücken, und verläuft dann wie bisher beschrieben.
In der Nähe der Kernanschwellung oder von dieser selbst, gehen
häufig dickere oder dünnere Fortsätze aus, welche oft so aussehen,
as wenn sie mit denen benachbarter Zellen wohl anastomosirt
hätten, ohne dass mir eine solche Anastomose bisher wirklich vor-
Studien zur vergleichenden Histologie der Retina. 345

gekommen wäre. (Siehe Taf. XXIV, Fig. 90.) Der innere Theil ist, soweit er die innere granulirte Schicht durchsetzt, auch glatt, doch gehen in der Nähe seiner Austrittsstelle und nach derselben häufig wieder den obigen ähnliche Fortsätze ab. Das Ende ist dann entweder kurz getheilt oder einfach.

Maasse:
äuss. e. k. Stz.: längster Durchm. 30—37 µ.
m. " " " " " " " 48—66 µ.
inn. " " " " " " " 56—121 µ.
c. kl. Stz.: Länge 420 µ, Breite 6 µ.
r. Stz.: Länge: Mitte 340 µ, Ora serrata 116 µ.

2) Brachsen, Abramis brama.

Taf. XXII, Fig. 5 b zeigt eine Zelle der mittleren Schicht, Taf. XXII, Fig. 5 a, 6, 7 solche der inneren Schichts für sich, theils im Zusammenhange mit benachbarten.

Taf. XXII, Fig. 8 zeigt dann zwei Zellen der kernlosen Schicht. Dieselben sind etwas kürzer und breiter als die vom Hecht, aber sonst diesen und ebenso den früheren ganz ähnlich. Taf. XXII, Fig. 10 giebt einen Theil von einem Stückchen dieser Schicht aus einem Isolationspräparat wieder, welches die kernlosen Zellen in ihrer Lage zueinander erkennen lässt. Man sieht das Bild ist ein ganz ähnliches wie das zuerst von der inneren kernlosen Schicht beim Neunauge gegebene, und es ist recht interessant, dass diese Zellen sich an derselben Stelle in so ähnlichen Formen wiederholen. Man könnte daraus mit einiger Wahrscheinlichkeit den Schluss ziehen, dass die kernlosen Zellen des Störs auch ähnlich liegen. Doch müssen diese dann jedenfalls eine vielfach durchbrochene Schicht bilden, da zweisellos bei jenem Thier die kernhaltigen inneren Zellen an manchen Stellen bis unmittelbar an die innere granulirte Schicht heranreichen.

Die radialen Zellen verhalten sich ähnlich denen des Hechts Taf. XXII, Fig. 9 giebt eine solche wieder.
M a a s s e:

m. c. k. Stz.: längster Durchm. ca. 28 μ.
inn. c. k. Stz.: „ „ „ 85 μ.
c. kl. Stz.: Länge 239—302 μ, Breite 8—10 μ.
r. Stz.: Länge ca. 176 μ.

3) Karpfen. Cyprinus carpio.

β) Anaeanthini.

Von diesen habe ich nur Pleuronectes Platessa, die Maischolle, untersucht, und zwar auch zu einer Zeit, in der ich auf die äusseren concentrischen Stützzellen noch nicht aufmerksam geworden war. Ich kann daher über diese hier nichts aussagen. Die anderen beiden kernhaltigen Schichten sind vorhanden und zeigen auch ähnlichen Typus wie bei den früheren Thieren. Merkwürdig ist es, dass die Zellen derselben Schichten ihrer Grösse nach so sehr variiren. So zeigen Taf. XXII, Fig. 12 und Fig. 11 e (erstere bei stärkerer Vergrösserung in der tieferen Lage) Zellen, welche zweifellos der mittleren Schicht angehören, aber ungemein klein erscheinen gegenüber der mächtigen Zelle in Taf. XXII, Fig. 11 d. Uebrigens sind diese grossen Zellen weit seltener als die kleineren, so dass es scheint, dass sie auf einem beschränkten Platze der Retina nur sich finden. Ähnlich verhalten sich die Zellen der inneren Schicht. Taf. XXII, Fig. 11 a, c
und Fig. 12, letztere in der oberflächlicheren Schicht zeigen derartige sehr zierliche kleinere Zellen. Man sieht, dass sie weithäufige Netze bilden auf der inneren Seite der mittleren. Taf. XXII, Fig. 11b zeigt uns aber eine Zelle, welche dem ganzen Habitus nach nichts anderes als eine Zelle der inneren Schicht sein kann, die ganz bedeutend grösser ist als jene. Vergleicht man die Maasse, so findet man merkwürdigerweise, dass in beiden Schichten etwa das gleiche Verhältniss zwischen grossen und kleinen Zellen besteht. In beiden sind die grossen nämlich etwa doppelt bis dreimal so gross als die kleinen.

Ebenso verhält sich die Maischolle auch abweichend in Bezug auf die kernlosen Zellen. Während diese bei den bisher beschriebenen Fischen im ganzen leicht zu finden sind, fand ich zuerst bei der Maischolle gar nichts von ihnen und schliesslich ein in Taf. XXII, Fig. 13 dargestelltes Gebilde, welches mir noch zweifelhaft ist. Dasselbe kann ja seinem ganzen Typus und seiner Grösse nach nur zu den concentrischen Zellen gehören und ist kernlos. Doch ist der eine Fortsatz nicht vollständig, endigt noch ziemlich dick, wenn auch bis zu diesem Ende sich zuspitzend, so dass die Möglichkeit nicht ausgeschlossen ist, dass dieses ganze Stück nur ein Fortsatz einer allerdings mächtig grossen kernhaltigen Zelle sein kann. Sollte dieses Gebilde wirklich eine kernlose Zelle darstellen, so wäre es noch sehr auffallend, dass diese sich verästelte, da ja bisher alle derartigen Zellen einfache Spindeln darstellten.

Betreffs der radialen Zellen, von denen Taf. XXII, Fig. 14 eine wiedergiebt, ist nichts Besonderes auszusagen.

Maasse:

m. c. k. Stz.: grösster Durchmesser:
 a) grosse Zellen 125 μ.
 b) kleine Zellen 45—62 μ.

inn. c. k. Stz.: grösster Durchmesser:
 a) grosse Zellen 375 μ.
 b) kleine Zellen 112—204 μ.

r. Stz: circa 190 μ lang.

Dass bei den Acanthopteri derartige Zellen in mehrfachen Lagen, deren Typen den bisher beschriebenen entsprechen, vorkommen, ist ja bereits durch die Untersuchungen von H. Müller bekannt.
Amphibien.

a) Anuren.

Rana esculenta.

Ich erwähnte oben bei Beschreibung von Protopterus annectens, dass der Typus der concentrischen Stützzellen dieses Thieres bereits vollständig dem der Amphibien entspräche. Man wird die Ähnlichkeit in den Elementen beider Thiere leicht herausfinden, wenn man die Abbildungen der Zellen des Frosches mit denen von Protopterus vergleicht. Taf. XXIV, Fig. 81 zeigt einen Theil eines Retinaquerschnitts. Es ist hier eine deutliche äussere granulirte Schicht unterscheidbar, welche ein streifiges Aussehen hat, wobei aber zwischen den die Streifen bedingenden Fasern auch Körnchen zu liegen scheinen. An der inneren Seite dieser Schicht sieht man regelmäßig in nicht grossen Zwischenräumen grössere quergestellte Kerne liegen, die auch von anderen Beobachtern schon beschrieben worden sind. Ausser diesen kommen aber mitunter auch solche zur Beobachtung, welche weiter in die Schicht hineinrücken, ja unter Umständen sogar mitten in derselben zu liegen scheinen. Endlich findet man auch hin und wieder Kerne, welche mehr rundlich oder mehr quer oval erscheinend auf der äussenseite der ausseren granulirten Schicht befindlich dicht anliegen. Auf Isolationspräparaten kann man nachweisen, dass die an der inneren Seite der äusseren granulirten Schicht befindlichen Zellen eine Gestalt besitzen, welche Taf. XXII, Fig. 18 wiedergibt. Man sieht hier einen grossen Kern, der an seiner nach aussen gewandten Seite eine schmale Zellplatte trägt, ganz ähnlich also wie bei Protopterus, nur dass bei Rana die Elemente kleiner sind, und auch vielleicht die Zellplatte im Verhältniss zum Kern noch kleiner ist. Von den äusseren Zellen habe ich nur die Kerne sehen können. Diese Zellen in ihren drei Lagen halte ich für die äusseren, mittleren und inneren concentrischen kernhaltigen Zellen. Man bemerkt leicht, dass die hier beschriebenen Zellen aller Wahrscheinlichkeit nach identisch sind mit denen, welche Ranvier als cellules basales externes, interstitielle und internes bezeichnet. Seiner Abbildung nach (25. Fig. 323) muss Pelobates sehr grosse Zellen der Art besitzen, ich habe dieses Thier nicht mehr untersuchen können. Ob diese Zellen anastomosiren, ist schwer zu sagen, gerade wie bei Protopterus, ich möchte es in-
Studien zur vergleichenden Histologie der Retina.

dess bei der geringen Ausdehnung der Zellplatte nicht für wahrscheinlich halten.

Einer anderen Art von Elementen thut aber bisher kein Beobachter Erwähnung, der kernlosen concentrischen Zellen. Diese liegen bei Rana, und von nun an bei allen weiteren Thieren, zwischen den äusseren und mittleren concentrischen kernhaltigen Zellen, also, da, wie wir sehen werden, an dieser Stelle auch gewöhnlich die äussere granulirte Schicht zu liegen pflegt, in diese eingebettet. Ich habe bei Protopterus sicher Fasern finden können, wie ich oben schon hervorhob, welche diesen zu entsprechen scheinen, für Ceratodus bin ich meiner Sache nicht sicher. Hier bei Rana sind es kleine zarte Gebilde, welche sich verästeln, wie Taf. XXII, Fig. 19 erkennen lässt. Und zwar ist die Form derartig, dass man einen faserartigen Körper unterscheiden kann, dessen beide Enden sich in Aeste auflösen. Manchmal findet man Aeste auch nur an einem Ende, und dann können Formen entstehen, die auf den ersten Blick den faserartigen Hauptkörper nicht mehr so deutlich erkennen lassen. Es ist also die spindelförmige Faser auch hier die Grundform der Gestalt und aus ihr gehen erst die mannigfachen sonstigen Formen hervor. Bei Protopterus war es mir nicht gelungen diese Gebilde soweit zu isoliren, dass ich bestimmen konnte, ob sie verästelt waren oder nicht. Taf. XXIV, Fig. 82 zeigt ein Stückchen Froschretina aus einem Isolationspräparat. Man sieht deutlich zwei derartige Zellen in der äusseren granulirten Schicht, von denen die eine frei hervorragt. Diese kernlosen Zellen geben vermöge ihrer Dicke wohl die Hauptveranlassung zu dem concentrisch streifigen Aussehen der äusseren granulirten, doch liegen ausserdem ja natürlich noch eine Menge von feineren nervösen Gebilden in ihr, die dieses Aussehen verstärken.

Die radialen Zellen sind mächtig entwickelt, wie bei allen Amphibien, ähnlich wie es ja auch die Zellen von Protopterus sind, doch haben sie nicht den zarten platten Körper dieser, sondern sind starke, kräftige Zellen. Die Zellen der dickeren Theile der Retina sind lange, schlanke Gebilde, welche in der Gegend der äusseren, granulirten Schicht in ihre äusseren Aeste zerfallen, welche sich wieder theilen können und schliesslich an die Limitans befestigen (siehe Taf. XXII, Fig. 20a); der Kern sitzt gewöhnlich mehr seitlich der Zelle an, manchmal ist aber auch die gewöhnliche Kernanschwellung vorhanden (Fig. 20c). Die Kerne liegen
alle in der inneren Körnerschicht gewöhnlich mehr im inneren Theil derselben bis zur Mitte hin. Das innere Ende der Zelle durchsetzt glatt die innere granulierte Schicht, schwillt dann konisch an und verschmilzt schliesslich mit den benachbarten (Fig. 20a). Je kürzer die Zellen werden, um so mehr wird der Körper derselben aber rauh und dominig, so dass mitunter die seltsamsten Formen entstehen können. Fig. 20c zeigt eine Zelle, welche im Ganzen wohl noch glatt ist, aber an ihrem inneren Ende eigenthümliche, nach innen ragende Fortsätze und trichterförmige oder kragenartige Bildungen erkennen lässt. Dieselben zeigt schräg von Innen gesehen Fig. 20d, noch rauher ist das innere Ende von Fig. 20b und e. Fig. 20f zeigt eine kurze Theilung des inneren Endes, wobei die einzelnen Aeste durch feine Membranen wie durch Schwimmhäute mit einander verbunden sind. Dornenartige kurze Fortsätze aus dem faserartigen Körper zeigen die Zellen in Fig. 20d, f, b, e in einer grösseren Menge und Ausdehnung. Bei letzterer sind einzelne dieser Fortsätze membranartig geworden, und Membranen können auch vorkommen an den äusseren Aesten der Zellen und diese mit einander verbinden, doch hebe ich ausdrücklich hervor, dass solche Membranen durchaus nicht allen Fasern zukommen, ja nicht einmal der Mehrzahl. Es kann am äusseren Ende auch eine Art von doppelter Theilung stattfinden, indem ein Hauptast schon früher von dem Stamme sich entfernt, so auf Fig. 20f. Zu diesem häutigen undornigen Zelltypus gehört wohl auch die von Ranvier (25. Fig. 319) dargestellte Zelle von Triton, wenn bei dieser nicht ein Theil der auffallend zahlreichen Membranen auf die Einwirkung der Osmiumsäure zurückzuführen ist. Osmiumsäure ist gerade in dieser Beziehung ein sehr gefährliches Reagenz. Sie giebt in der Retina eine solche Menge Gerinnungsprodukte, welche in Folge der eigenthümlichen Strukturverhältnisse der Retina oft so unschuldig und natürlich aussehen, dass es einem schwer werden würde, sie als Gerinnungsprodukte zu betrachten, wenn man nicht zu diesem Schritte in Folge der durch andere Präparationsmethoden erhaltenen Bilder genöthigt würde. In Folge des starken und kräftigen Baus dieser Zellen ist es bei Amphibien auch leichter als bei anderen Thieren, sich von dem Verhältniss der radialen Zellen zur Limitans externa und zu den äusseren Körnern zu überzeugen. An den Zellen der Fig. 20 sitzt überall ein Stück Limitans an. Man be-
merkt, dass die Acstc der Zellen sich entweder einfach als kleine Fasern an die strichformig erscheinende cuticulare Membran an- setzen, oder dass unter Umständen auch kleine dreieckige (konische) Anschwellungen an den Ansatzstellen sich finden. Auf Fig. 20 d sieht man schräg von oben her auf ein Stückchen Limantins herauf. Man bemerkt die grossen Löcher für die Neuroepithelien, sieht die schmalen Ringe um diese Maschen, und von ihnen ausgehend kleine Stückchen der abgerissenen benachbarten.

b. Urodelen.

Von diesen wurden untersucht Triton cristatus, Salamandra maculosa, Siredon pisciformis, welche ich hier gemeinsam durch- sprechen will.

Bei Triton scheinen die kernhaltigen concentrischen Zellen der beiden inneren Reihen ähnlich vorzukommen wie beim Frosch. Auf dem Retinaquerschnitt ist allerdings von denselben nur wenig zu sehen. Die colossalen Elemente, namlich die Kerne sind ja so gross, liegen so enge aneinander, die Zellplatten sind so sehr klein, dass man nur in Ausnahmefällen sich hier über diese Zellen orientieren kann. Auch auf dem Isolationspräparat ist es schwer die Zellen zu finden. Taf. XXII, Fig. 21 A zeigt eine solche. Wenn man sie mit denen vom Frosch vergleicht, ist die Ähnlichkeit gross genug, um sie ihrer Bedeutung nach zu erkennen, hat man aber solche Zellen noch nicht gesehen, würde man sie bei Triton wohl nicht auffinden. Die Zellplatte ist eben ungemäin klein geworden gegenüber dem Kern. Bei Salamandra und Siredon, welche beide ja noch grössere Elemente haben, ist es mir nicht gelungen die Zellen zu finden. Die Zellplatten werden eben wahrscheinlich noch kleiner geworden sein und dann entgehen sie zu leicht dem suchenden Auge.

A. Dogiel scheint diese Zellen bei Triton auch gefunden zu haben, freilich ohne sie ihrer Bedeutung nach zu erkennen. In seiner Arbeit über den Bau der Retina von Triton cristatus (34) bildet er Zellen als nervöse innere Körner ab, welche mir ziemlich zweifellos die von mir als concentrische Zellen gedeuteten zu sein scheinen. Sie haben dieselbe Lage, haben dieselben kleinen Zellplatten. Man vergleiche zu diesem Zweck nur die auf seiner Taf. XXII mit 2c, 2e, 13 bezeichneten Figuren. Aeusseres concent-
trische kernhaltige Zellen habe ich bei diesen Thieren nicht finden können.

Kernlose concentrische Zellen habe ich hier ebenfalls nicht sehen können. Ich zweifle indess deshalb nicht im geringsten daran, dass sie vorhanden sein werden. Ich habe so oft bei Thieren, bei denen diese kernlosen sehr gross und schön entwickelt waren, sehr lange gesucht bis ich eine fand, so dass hier, wo die Zellen ja jedenfalls nur sehr klein und zart sind, ein Nichtfinden etwas rein Zufälliges nicht nur sein kann, sondern wahrscheinlich ist.

Die radialen Zellen sind auch bei diesen Thieren auf's schönste und kräftigste entwickelt. Taf. XXII, Fig. 11 a b, zeigt solche von Triton, Taf. XXII, Fig. 22 a, b e solche von Salamandra. An den ersteren sieht man wieder sehr schön die kegelförmigen Ansätze an die Limitans externa. Die hier abgebildeten Zellen sind im allgemeinen glatt, doch gilt von ihnen dasselbe wie von denen des Frosches, dass sie in verschiedenen Theilen der Retina verschieden beschaffen sind und je kürzer um so dorniger und häutiger. Als Beispiels einer solchen Zelle kann ja auch die schon oben citirte Ranvier'sche Abbildung von Triton dienen. Fig. 22 a zeigt eine Zelle, bei der ziemlich viel Membranen vorhanden sind. Die Kerne der Zellen liegen wieder in der inneren Körnerschicht ähnlich wie beim Frosch, die Theilung in äussere Aeste beginnt in der Nähe der äusseren granulirten oder in dieser. Die inneren Enden sind entweder einfach oder ganz kurz geteilt. Mitunter sind dieselben häutig platt mit dickeren Rippen wie auf Fig. 22 b und c.

Bei den Zellen dieser Thiere wie bei denen des Frosches sieht man auf das Klarste, wegen der Grösse der Theile eben noch klarer als bei anderen Thieren, dass die äusseren Körner, resp. die inneren Enden der Neuroepithelien sich nicht mit den radialen Zellen verbinden, wie W. Krause das ja seit langer Zeit behauptet, sondern nur zwischen den Aesten der Zellen liegen und von diesen eben gestützt werden. Ich habe hier, in den oben citirten Abbildungen, von Frosch, Triton und Salamandra derartige Neuroepithelheile zwischen den Aesten der Zellen liegend abgebildet und glaube, dass die Bilder an sich so klar sind, dass ich eine nähere Beschreibung nicht nöthig habe.
Maasse:

Rana:

m. und inn. c. k. Stz.: Länge der Zellplatte 20—23 µ.

c. kl. Stz.: Länge 39—50 µ. Breite: 0,5 µ—2 µ.

r. Stz.: Länge 100—200 µ.

Triton:

m. und inn. c. k. Stz.: Länge der Zellplatte 14 µ.

r. Stz.: Länge: Mitte 275 µ, Ora serrata 81 µ.

Salamandra:

r. Stz.: Länge der einen abgebildeten Zelle 208 µ.

Reptilia.

a) Cheloniæ.

1) Emys europaea.

Wie der Querschnitt der Retina auf Taf. XXIV, Fig. 84zeigt, liegen bei Emys der inneren Seite der äusseren granulirten Schicht grössere Kerne in einer Reihe an, welche theilweise von einer grösseren Menge einer körnigen Substanz umgeben sind. Dieses sind wieder die mittleren und inneren kernhaltigen concentrischen Zellen. Einen Unterschied in der Lage der einzelnen, so dass man zwei Schichten unterscheiden konnte, habe ich hier nicht finden können. Man kann hier also nur von einer Schicht derselben sprechen. Isolirt sieht man eine solche Zelle in Taf. XXII, Fig. 23 a von einem Thier, und Fig. 23 b drei von einem anderen Thier, Es sind Zellen mit grossem Kern und flachem Körper, aus dem der Kern buckelförmig hervortritt. Der flache Körper ist leicht granulirt und besitzt eine Anzahl von Fortsätzen. Ob diese mit solchen benachbarter Zellen anastomosiren, ist schwer zu sagen, doch habe ich niemals Bilder gehabt, welche für Anastomosen sprachen, so dass ich gerade wie bei den Amphibien mich gegen ein Anastomosiren aussprechen möchte.

Ob bei Emys äussere kernhaltige Zellen vorkommen, ist mir zweifelhaft geblieben. Man sieht häufig zwischen denjenigen Gebilden, welche man als zweifellose Neuroepithelien erkennen kann, kleinere rundliche Kerne, welche zwischen den Fussenden jener dicht an der äusseren Seite der äusseren granulirten Schicht anliegen. Aber einmal rücken diese Zellen mitunter auch weiter
von dieser Schicht ab zwischen die Neuroepithelien hinein, und zweitens sieht es manchmal auch so aus, als ob diese Kerne mit zu den Neuroepithelien zu rechnen seien, und zwar gerade dann, wenn man noch eine Protoplasmaumhüllung wahrnehmen kann. Auf Taf. XXIV, Fig. 85 sind solche Kerne (bei a) von einem Stückchen der Retina aus einem Zerzupfungspräparat nach Behandlung mit Müller'scher Flüssigkeit dargestellt. Hier liegen dieselben recht weit von der äusseren granulirten und damit den anderen concentrischen Zellen entfernt. Auf demselben Präparat bemerkt man auch noch zwei innere concentrische Zellen.

Die kernlosen concentrischen Zellen sind hier wieder kräftiger entwickelt als die kernhaltigen, ähnlich wie beim Frosch. Es sind wiederum Formen, welche sich aus der einfachen spindelförmigen Faser ableiten lassen. Mitunter findet man auch noch solche, so auf Taf. XXII, Fig. 24 b von demselben Thiere, von dem oben die kleineren kernhaltigen Zellen stammten. Dieselbe Figur zeigt eine zweite Zelle, bei der einfach eine Gabelung beider Enden eingetreten ist. Fig. 24 a zeigt dann eine Anzahl von Zellen von dem Thiere, von welchem die grösse kernhaltige Zelle herrührte. Diese lassen immer noch den spindelförmigen Körper erkennen, besitzen aber schon eine Menge von Fortsätzen, welche von den Seiten abgehen. Man sieht, es sind relativ grosse Gebilde, welche ein feinkörniges Gefüge besitzen, in denen aber von einem Kern niemals etwas zu sehen ist. Diese Zellen liegen hier wiederum in der äusseren granulirten Schicht, wie beim Frosch, also nach aussen von und unmittelbar an den mittleren — inneren kernhaltigen. Auf Taf. XXIV, Fig. 85 sieht man eine solche Zelle hervorragend und von einer zweiten ein Stück in der Schicht. Diese Zellen hat H. Müller, wie oben angeführt, zwar nicht bei Emys, aber doch bei Chelonia schon gesehen und abgebildet, und er hatte damals auch die Kernlosigkeit derselben besonders hervorgehoben.

Die radialen Zellen zeichnen sich dadurch aus, dass ihre äusseren Aeste sehr kurz und relativ stark sind, während der innere Theil in eine Anzahl zarter und langer Fortsätze zerfällt. Die Kernanschwellung liegt in der inneren Körnerschicht gewöhnlich näher der inneren Partie derselben und sehr bald nach innen von dem Kern tritt die Theilung der Zelle ein. Die Aeste sind glatt und durchsetzen als solche die innere granulirte Schicht, sie
endigen in kegelförmigen Anschwellungen. Taf. XXII, Fig. 25 a, b c, d, e zeigt eine Anzahl derartiger Zellen von demselben Thiere, von dem Fig. 23 a und Fig. 24 a herrühren. Wie man bemerkt, theilt sich die Zelle nach innen zunächst cabelförmig in zwei Hauptäste, von denen dann ein jeder wieder in zwei weitere zerfällt. Bei Fig. 25 e ist nur der eine Ast wieder getheilt, bei Fig. 25 a verbinden sich zweimal zwei Aeste anastomotisch, während der eine ganz unten wieder noch einmal sich gabelt, so dass doch vier Fusspunkte herauskommen. Mitunter können diese Aeste auch membranartige Verbreiterungen zeigen, so Fig. 25 d; und ebenso können zwischen den kurzen äusseren Aesten Membranen sich verfinden, im ganzen sind die Zellen aber glatt und membranlos. Diese eigen tümliche lange Theilung der inneren Zellenden, welche, wie wir sehen werden, auch den anderen Reptilien und den Vögeln zukommt, habe ich sonst nur noch bei den Plagiostomen gefunden. Bei Emys sieht man dann noch ganz besonders gut die von der Limitans ausgehenden kleinen Nadeln oder Härcchen (siehe Taf. XXII, Fig. 25 f.), welche um die ausserhalb der Limitans liegenden Theile der Neuroepithelien dichte manschettenartige Kränze bilden.

Maasse:

m. und inn. c. k. Stz.: grösster Durchmesser:
 a) kleineres Thier 23—31 μ.
 b) grösseres Thier 60—66 μ.

e. kl. Stz.: 1) grösster Durchmesser, 2) Breite.
 a) kleineres Thier 1) 60—104 μ, 2) 2 μ.
 b) grösseres Thier 1) 48—104 μ, 2) 3—5 μ.

rad. Stz.: Länge:
 a) kleineres Thier 160—198 μ.
 b) grösseres Thier 164—191 μ.

2) Chelonia Midas.

Von diesem Thiere standen mir nur zwei Osmiumpräparate zu Gebote, doch war das meiste wesentliche auch an diesen zu
erkennen Dank den ungemein grossen Elementen dieses Thieres. Taf. XXIV, Fig. 83 zeigt ein Stück eines Schrägschnittes der Retina, der indess so wenig schräg getroffen ist, dass er einem Querschnitt recht nahe steht. Man sieht darin leicht eine dicke Schicht von faserartigen Gebilden, welche sich innen an die äussere granulirte Schicht an- resp. in dieselbe noch hineinlegt, und nach innen, dieser Schicht anliegend, eine grosse kernhaltige Zelle, dann folgen die Kerne der Radialzellen, inneren Körner, innere granulirte Schicht. Die kernhaltige Zelle repräsentirt die mittleren und inneren concentrischen kernhaltigen Zellen. Gerade wie bei Emys liegen diese Zellen hier in einer Reihe der äusseren granulirten, resp. hier in diesem Fälle der mächtigen Schicht der kernlosen Zellen an. Isolirt sieht man solche Zellen auf Taf. XXII, Fig. 26 a, b. Es sind wieder kernhaltige Zellplatten mit leichter Körnung und einer Anzahl von Fortsätzen, von denen ich nicht annehme, dass sie anastomosiren. Der Kern springt gemäss seiner grösseren Dicke wieder aus der Zelle hervor, oder besser gesagt, buckelt dieselbe aus. Von den äusseren Zellen gilt hier dasselbe, was ich bei Emys sagte.

Die kernlosen Zellen sind mächtige Gebilde und erinnern sehr an die Zellen der Fische. Sie lassen die spindelförmige Grundform deutlich erkennen, so Taf. XXIV, Fig. 94 b, welche eine Zelle zeigt, die nur an dem einen Ende eine ganz kleine Gabelung und einen kleinen Fortsatz in ihrem Verlaufe besitzt, ähnlich auch Taf. XXII, Fig. 27, wo die Zelle indess schon eine früher eintretende, breitere Gabelung aufweist, deren Enden abgerissen sind. Dann finden sich aber auch Formen, an denen mehr Fortsätze sich entwickeln, so Taf. XXIV, Fig. 94 a. Diese Zellen bilden, wenn sie in ihrer natürlichen Lage in Stücken der Schicht isolirt werden, einen Filz, der genau so aussieht, wie der von den Fischen, z. B. der von Brachsen in Taf. XXII, Fig. 10 abgebildete. Es sind also jedenfalls principiell dieselben Elemente, nur dass sie an einem anderen Orte liegen. Man kann daraus schliessen, dass die kernlosen Zellen, welche wir sonst bei anderen Thieren finden, und die wegen ihrer Kleinheit und relativ geringen Anzahl sich nicht in solch grossen Schichtstücken isoliren lassen, doch im Grunde ebenso zu einander liegen, wie diese grossen von Chelonia und die von den Fischen. Und man sieht an diesem Beispiel auch wieder deutlich, wie diese concentrischen Zellen mit der äusseren grani-
lirten eben nichts weiter zu thun haben, als dass sie eventuell an
demselben Platze liegen, sie haben mit ihrer Structur keinen Zu-
sammenhang und liegen je nach der Massenhaftigkeit ihrer An-
häufung theils in ihr, theils an ihr an.

Die radialen Zellen scheinen, so weit ich das an den Osmium-
präparaten constatiren konnte, ganz ähnlich denen von Emys zu sein.

Die kerulose Zellen, welche H. Müller seiner Zeit von der
Schildkröte abbildete, stammten von Chelonia her, und wenn man
seine Abbildung mit der Natur vergleicht, so ist es einmal zweifel-
los, dass er dieselben Gebilde gesehen hat, die ich hier als kon-
zentrische kernlose Zellen beschreibe, und dann, dass er mit rela-
tiv vielen Fortsätzen versehene abgebildet hat, immerhin kann man
aber auch aus seinen Abbildungen natürlich deutlich die langge-
streckte spindelförmige Grundform noch heraus erkennen. Diese
Zellen sind bei Chelonia in der That so massenhaft vorhanden und
so gross, dass es unmöglich ist sie nicht zu sehen.

Maasse (nach Osmiumpräparaten):

m. u. inn. c. k. Stz.: grösster Durchmesser: 79—83 μ.
c. kl. Stz.: 155—255 μ.
Breite: 8—12 μ.

b) Sauria.

Lacerta vivipara.

Die Verhältnisse sind hier denen der Schildkröten so unge-
mein ähnlich, dass ich mich sehr kurz fassen kann.

Aeussere kernhaltige Zellen sind nicht mit Sicherheit nach-
zuweisen. Mittlere und innere sind in einer an der äusseren gra-

nulirten Schicht innen anliegenden Reihe zu sehen. Isolirt sind es
kleine Zellen (s. Taf. XXII, Fig. 28) mit dünnen, leicht granulirten,
Fortsätze tragenden Zellplatten, stark vorgebuckeltem Kern, und
wahrscheinlich nicht anastomosirenden Fortsätzen.

Die kernlosen Zellen sind wieder langgestreckte Gebilde,
welche namentlich an den Enden eine Anzahl feiner gabelförmiger
Aeste zeigen (siehe Taf. XXII, Fig. 29).

Die radialen Zellen, von denen man auf Taf. XXII, Fig. 30 a,
b, c, d vier Formen sieht, haben gleichfalls den Typus der ent-
sprechenden Zellen der Schildkröten. Auch besitzen sie mitunter
Membranen zwischen den äusseren Aesten, welche letzteren wiederum
in der Gegend der äusseren granulirten Schicht entstehen. Die inneren Enden sind ebenfalls in der Majorität der Fälle langgetheilt, doch kommen auch ungetheilte vor (Fig. 30 b) und Uebergänge zu solchen, indem der eine der beiden durch Gabelung entstandenen Hauptäste sich nur ein kürzeres Ende entwickelt und schliesslich in feinen Fasern endigt, die in der inneren granulirten Schicht wahrscheinlich schon aufhören. So auf Fig. 30 d, a. Die deutliche Kernanschwellung liegt wiederum in der inneren Körnerschicht.

Maasse:

m. und inn. c. k. Stz.: grösster Durchm.: 41—50 μ.
e. kl. Stz.: 100 μ. Breite: 3 μ.
r. Stz.: Länge: 110—125 μ.

Von Schlangen habe ich Tropidonotus matrix untersucht, doch ist es mir bisher nicht gegliedert die Zellen nachzuweisen.

Die radialen Zellen scheinen hier an ihren inneren Enden dieselbe lange Theilung zu besitzen, wie bei den bisher besprochenen Reptilien.

Von Krokoedilen standen mir Augen leider nicht zu Gebote.

Vögel.

Von Vögeln habe ich untersucht: Huhn, Krähe, Ente, welche sich alle drei so gleichartig verhalten, dass ich sie hier gemeinsam besprechen kann.

Diese Vögel schliessen sich in ihrem Bau unmittelbar den Reptilien an. Taf. XXIV, Fig. 87 giebt ein Stückchen eines Retinaquerschnittbildes aus einem Schüttelpräparat wieder aus dem Auge einer jungen Ente. Man sieht die Limitans, die äusseren Körner, die äussere granulirte Schicht, und deren innerer Seite unmittelbar anliegend eine Reihe von Kernen mit im Profil strichähnlichen, schmalen Zellplatten, eventuell auch noch etwas körnige Substanz um den Kern. Diese Zellen entsprechen wieder den mittleren und inneren kernhaltigen Zellen. Äussere Zellen habe ich bei Vögeln nicht finden können.

Eine ähnliche Zelle zeigt von demselben Thiere Taf. XXII, Fig. 36 A, vom Huhn Taf. XXII, Fig. 31 b, und eine gleiche von der Fläche gesehen Taf. XXII, Fig. 31 a. Man sieht, es sind wieder kleine, flache Zellen mit einer Anzahl kurzer Fortsätze versehen,
die wohl nicht mit benachbarten anastomosiren. Dieselben schliessen sich in ihrer Form und Grösse unmittelbar an die der Reptilien an.

Die kernlosen Zellen sind ebenfalls denen der Reptilien durchaus ähnlich. Die von einer jungen Ente stammenden auf Taf. XXII, Fig. 36 B, a, b, e dargestellten würde man z. B. mit denen von Emys direkt verwechseln können. Die vom Huhn (Taf. XXII, Fig. 32) und von der Krähe (Taf. XXII, Fig. 34 a, b) sind schlanker, und dadurch von denen der Reptilien unterscheidbar, sonst haben sie aber auch dieselben Formen, so z. B. Fig. 34 b, welche Fig. 36 B, a von Ente und Taf. XXIV, Fig. 94 a von Chelonia entspricht. In allen ist eben immer auch wieder ein faserartiger spindelförmiger Hauptkörper zu erkennen und Fortsätze, welche entweder von dem einen Ende desselben hervorgehen, so dass das andere Ende dann frei bleibt und die Spindelform bewahrt, oder die Fortsätze gehen nach beiden Seiten vom Körper ab, und beide Enden bleiben frei. Die Aeste selbst können sich dann wiederum theilen. Diese Zellen liegen gerade so wie bei den Reptilien in der äusseren granulirten Schicht, in welche auch die Fortsätze der kernhaltigen Zellen ja hineinragen. Taf. XXIV, Fig. 81 und 86 zeigen von Ente und Krähe derartige Zellen, welche noch theilweise in der granulirten Schicht liegen, theilweise aus derselben hervorragen. Auf der letzteren Abbildung liegt die Zelle in einem Stückchen der granulirten Schicht, welches eine ziemliche Breite besitzt, so dass man schräg von oben her auf die äussere Fläche heraufsieht und die tieferen Partien, welche bei tieferer Einstellung gezeichnet sind, daher über die oberflächlichen zu liegen kommen. So sieht man auch einen einer kernhaltigen concentrischen Zelle angehörrigen Kern, der durch die granulirte durchschimmert, bei β, hier höher liegen als den Körper der kernlosen Zelle, welche oberflächlicher liegt bei α. Sonst erblickt man noch die Fusskegel einiger Neuroepithelien und die Limitans.

Was die radialen Stützzellen anlangt, so sind auch diese denen der Reptilien durchaus gleich. Taf. XXII, Fig. 36 zeigt zwei von einer jungen Ente, Fig. 33 vom Huhn, Fig. 35 von der Krähe. Alle Zellen haben deutliche Kernanschwellungen, die in der inneren Körnerschicht liegen. Von dieser Stelle aus steigt der Stamm der Zelle glatt oder kurze Aeste tragend mehr oder weniger weit nach aussen auf, bis in der Nähe der äusseren granulirten Schicht der Zerfall in Aeste stattfindet. Diese sind relativ kurz, und tragen häufig an ihren Enden wieder deutlich jene schon früher beschrie-
benen conischen Anschwellungen, an denen dann unmittelbar die Limitans ansitzt. Auch hier können dann wieder Membranen vorkommen, wie auf Fig. 35, wo noch ein Korn dazwischen liegt. Das innere Ende der Zelle theilt sich wieder sehr bald nach innen von dem Kern, die Aeste sind oft recht fein und reissen leicht ab, sie durchsetzen glatt die innere grauulirte Schicht und endigen kegelförmig anschwellend. Auch hier bei den Vögeln findet man immer Zellen, welche einfach endigen, wie bei den Reptilien, aber auch hier bilden sie die entschiedenen Ausnahmen.

Maasse:

Ente.

m. und inn. e. k. Stz.: grösster Durchm. 20—23 μ.

c. kl. Stz.: „ „ 52—82 μ, Breite 1,5—2,5 μ.

r. Stz.: Länge 110—125 μ.

Krähe.

c. kl. Stz.: grösster Durchm. 100—104 μ, Breite 1 μ.

r. Stz.: 100—120 μ.

Huhn.

m. und inn. e. k. Stz.: grösster Durchm. 39—50 μ.

c. kl. Stz.: „ „ 94—129 μ, Breite 0,75—1,00 μ.

Säugethiere.

Bei den Säugern waren die concentrischen Zellen, wenigstens die kernhaltigen, schon mehrfach gesehen. Wie aus der oben angeführten Litteratur hervorgeht, hatten Kölliker und Merkel sie beim Rinde, Rivolta, Golgi und Manfredi und Schwalbe beim Pferde, Ranvier bei der Katze, Schwalbe und Dogiel beim Menschen, Nordenson bei verschiedenen Säugethieren gefunden, und zum Theil auch als zur Stützsubstanz gehörend gedeutet. Sei es mir gestattet hier jetzt kurz die Resultate meiner Untersuchungen mitzuteilen.

Ich will zu diesem Zwecke die verschiedenen von mir untersuchten Thiere hier zusammenfassen, da dieselben sämtlich denselben Typus erkennen liessen. Den Menschen will ich zuletzt gesondert besprechen.

Die äusseren kernhaltigen Zellen habe ich bei den Säugern nicht gefunden.

Die mittleren und inneren liegen wieder in einer Reihe an
der inneren Seite der äusseren granulirten Schicht an. Es sind platte, sehr stark verästelte Zellen von ungemaeiner Grösse mit grossem ungefaher kugeligem oder ovalem Kern und Kernkörperchen. Der den Kern umgebende Theil des Zellkörpers ist relativ gering an Masse, doch grösser wie bei den vorigen Klassen mit Ausnahme der Fische. Der Zellleib ist dicht am Kern gewöhnlich feinkörnig, die Ausläufer erscheinen mehr homogen. Während der Kern sich deutlich färbt, bleibt der Zellkörper hell, ungefärbt oder färbt sich doch nur schwach. Die Fortsätze der Zellen sind so lang, dass sie grösser sind als die Entfernung von einem Zellkern zum anderen, wenn die Zellen sich in der natürlichen Lage an der äusseren granulirten Schicht befinden, es ist in Folge dessen nothwendig, dass die einzelnen Zellen mit ihren Ausläufern in das Gebiet benachbarter Zellen hineinragen, und dass die Ausläufer sich durchflechten. Ein Anastomosiren derselben mit denen be

Die Ausbreitung der feineren Fortsätze geht in der äusseren granulirten Schicht vor sich und hier bilden dieselben also ein dichtes' Geflecht, zwischen dessen Fasern eine Anzahl Lücken übrig bleiben, durch welche die die Retina senkrecht durchsetzenden Elemente hindurchtreten. Die Zellkörper mit den Kernen und ebenso gewöhnlich der Anfang der grösseren Fortsätze liegen regelmässig wie bei den drei letzten Klassen auch nach der inneren Körnerschicht hin frei. Ofters sieht es auf dem Retinaquerschnitt so aus, als wenn um jeden dieser grossen Zellkörper ein heller Hof läge, doch ist dies durchaus nicht immer der Fall. Man wird das eben Gesagte wohl erkennen können auf Taf. XXIV, Fig. 95, welche einen Theil eines Retinaquerschnitts vom Kaninchen nach Goldbehandlung wiedergiebt, und auf Taf. XXIV, Fig. 97, welche ein Stück eines Querschnitts der Pferderetina zeigt. Beide Präparate verdanke ich Herrn Dr. Nordenson. Auf der ersten Abbildung sieht man die grossen, hier querovalen Kerne mit deutlichen Kernkörperchen, theilweise von einem hellen Hofe umgeben, die Zellkörper traten bei dieser Färbung nicht besonders gut hervor. Auf dem Präparat vom Pferd sind auch die Zellkörper (β) deutlich sichtbar und ebenso die Anfänge der Fortsätze. An einer Stelle, bei β', bemerkt man, dass der Kern soweit nach innen tritt, dass er bei der sehr schmalen inneren Körnerschicht die innere granulirte erreicht.
Auf Taf. XXIII, Fig. 43 b sieht man dann eine derartige Zelle vom Kaninchen isolirt von der Fläche. Diese Zelle ist bei derselben Vergrösserung gezeichnet wie alle anderen, man erkennt so leicht die kolossale Grösse derselben, welche alle bisherigen übertrifft. Diese Grösse wird hervorgebracht durch die so sehr langen, schlanken Fortsätze, die ja sicher theilweise noch länger sind als die hier gezeichneten, da bei ihrer grossen Feinheit die Wahr scheinlichkeit, dass Stücke von ihnen bei der Isolirung aus dem dichten Filz, in dem sie stecken, abreißen, natürlich sehr gross ist. Fig. 43 a zeigt eine ebensolche Zelle im Profil. Man sieht den an der einen Seite der Zellplatte sich vorbuckelnden Kern und den langen schmalen Contour der Platte bis zu den beiderseitigen Fortsätzen. Um sich schnell eine Vorstellung von der Grösse dieser Zellen zu bilden, vergleiche man Fig. 45 a, b, c, d, welche radiale Stützzellen vom Kaninchen bei derselben Vergrösserung darstellen. Taf. XXIII, Fig. 46 gibt ein Stückchen der äusseren granulirten Schicht der Kaninchenretina bei 220 facher Vergrösserung wieder, während die bisherigen Zeichnungen der einzelnen Zellen bei 240 facher ausgeführt waren. Das Stückchen der granulirten Schicht stammt aus einem Schüttelpräparate her, und ist so gelagert, dass man von innen her auf die Schicht heraupblickt. Es treten hier deutlich die Zellkörper mit ihren Kernen hervor, man sieht wie die weitverzweigten Fortsätze mit denen benachbarter Zellen sich kreuzen. Ausser diesen Fortsätzen ziehen noch eine Menge feiner Fäserchen überall hin, sich ebenfalls mannichfach schneidend, und dazwischen befinden sich die kleinen Körnchen der granulirten Substanz. Von allen diesen Gebilden umgeben und umgrenzt sieht man dann eine Menge grösserer und kleinerer Öffnungen, welche jedenfalls zum Durchtritt für die die Retina radial durchsetzenden Elemente dienen. Diese Öffnungen sind hier von ganz anderen Gebilden begrenzt wie in den concentrischen Schichten der Fische. Bei diesen lagen die Zellen frei für sich und sie bildeten die Lücken; hier liegen noch nervöse Fäserchen und granulirte Substanz zwischen den Ausläufern der Zellen gemäss der stärkeren Entwicklung der granulirten Schicht und der Verschiebung der Schichten gegen einander, durch welche die concentrischen Zellen theilweise in die granulirte hineinverlegt, mit ihr vermischt werden. Man sieht aber auch auf dieser Zeichnung deutlich, wie schwierig es sein dürfte hier nervöse Fäserchen und

Taf. XXIII, Fig. 47 a und b geben die Bilder zweier kernhaltiger Zellen vom Hund, die denen des Kaninchens durchaus ähnlich sind.

Taf. XXIII, Fig. 51 a, b, c zeigen derartige Zellen vom Schwein. Die Zellen sind kleiner als die bisher betrachteten, sonst aber denselben ähnlich. Fig. 51 a gibt nur das Mittelstück mit dem Kern und den Anfängen der Fortsätze.

Taf. XXIII, Fig. 52 a, b stellen solche Zellen vom Rinde dar. Fig. 52 a zeigt einen relativ mächtigen Zellkörper, wie er den Beschreibungen der Forscher entspricht.

Ahnlich gross ist der mittlere Zelltheil beim Pferde auf Fig. 55. Die Zelle ist fast sternförmig, so regelmassig gehen nach allen Seiten hin die Fortsätze aus. Auch ist die Zelle sicher noch weit grösser gewesen, denn die Fortsätze endigen auf der Zeichnung noch recht dick und abgebrochen. Nach dem, was ich von diesen Zellen gesehen habe, kann ich die Form der Zellen auf der Abbildung von Golgi und Manfredi nicht als die natürliche anerkennen, abgesehen auch von den erst schon erwähnten Varicositäten. Die Ausläufer gehen zu plötzlich von dem zu dick gezeichneten Körper ab. Ebenso wenig kann ich die von Schwalbe (16) gegebene Zeichnung von dem Aussehen dieser Zellen beim Pferde als genau ansehen.

Taf. XXIII, Fig. 56 zeigt den mächtigen Zellkörper zweier Zellen vom Hirsch mit Anfängen der Fortsätze.

Im Gegensatze zu diesen sehr kräftigen, starken Zellen steht dann die durchaus schlanke, mit sehr zarten Fortsätzen versehene von Meerschweinchen (Taf. XXIII, Fig. 58).

Taf. XXIII, Fig. 42 endlich stellt eine derartige Zelle von der

Man sollte nun annehmen, dass es bei der Grösse dieser Zellen keine Schwierigkeit haben dürfte, dieselben auf einem Schüttelpräparat aufzufinden. Ist das Schüttelpräparat gelungen, so dass die Retina sich gut in ihre einzelnen Elemente gesondert hat, ohne dass diese zu stark angegriffen sind durch die langsame Maceration, so ist es auch in der That nicht schwer, die Zellen zu finden und auch in schönen Exemplaren zu finden. Ihre Grösse verrath sie eben, wo sie auch liegen mögen. Ist das Präparat aber nicht so gelungen, ist es zu wenig oder zu viel macerirt, so kann man oft suchen und suchen, ohne auch nur eine Spur davon auffinden zu können. Mir ist das z. B. beim Hund in dem Anfange der Untersuchung mehrere Male nach einander so ergangen, so dass ich schon fast zu der Meinung gekommen war, dass der Hund derartige Zellen nicht besässe, da ich mir nicht vorstellen konnte, dass solch grosse Elemente sich so leicht verbergen könnten, und doch war es schliesslich so, denn als einmal die Maceration gut gelungen war, hatte es durchaus keine Schwierigkeit eine Menge dieser Zellen auch beim Hunde nachzuweisen. Dieselben auf einem Isolationspräparat in situ zu sehen, so dass man Lage und Ausdehnung der Zelle beurtheilen kann, ist immerhin nicht ganz leicht. Taf. XXIV, Fig. 96 zeigt bei 300 maliger Vergrösserung ein Stückchen der Hunderetina von einem Schüttelpräparat. Dasselbe gibt ungefähr ein Querschnittsbild. Man sieht deutlich eine grosse Zelle, deren Fortsätze an beiden Seiten noch weit frei hervorragen. Man erkennt an diesem Bilde auch einigermassen das Grössenverhältniss der Zelle zur Retina.

Wenn man auf jenem Querschnitt der Kaninchenretina in Fig. 95 die Entfernung der Kerne der concentrischen Zellen misst, so findet man, dass dieselben 46—83 μ, im Durchschnitt 66 μ, aus einander stehen. Die Grösse der Zellen beim Kaninchen ist etwa 400—450 μ. Es wird also eine Zelle nach jeder Seite mit ihren Aesten etwa über die drei nächsten Zellgebiete hinzieheen und noch die Ausläufer der sechsten bis siebenten Zelle berühren können. Eine Zelle z. B., die in der Mitte des hier dargestellten Bildes mit ihrem Kern läge, würde mit ihren Fortsätzen noch an beiden
Seiten frei hervorragen. Es sind also Zellen von so kolossaler Ausdehnung, dass sie alle anderen in der Retina vorhandenen Elemente weit an Grösse übertreffen. Dass bei dieser Ausdehnung so weit verzweigter Elemente nun in der äusseren granulirten Schicht ein unendliches Fasergewirre entstehen muss, ist ja selbstverständlich.

Die kernlosen Zellen der Säuger sind ebenfalls sehr gross, grösser als bei allen Thieren, die Fische ausgenommen. Sie sind indessen trotz ihrer Grösse nicht ganz leicht zu finden, da sie recht zart sind, und sich, da sie ebenfalls manichfach verästelt sind, sehr schwer aus dem Filz isoliren. Sie haben wie alle derartigen Zellen bisher den langgestreckten, spindelförmigen Grundtypus bewahrt. Taf. XXIII, Fig. 44 a und e zeigen solche Zellen vom Kaninchen, bei denen sowohl von dem langgestreckten Körper wie namentlich von den Enden zahlreiche Aeste abgehen, Fig. 44 b eine von denselben Thiere, bei der die Verästelung mehr von dem einen Ende ausgeht. Fig. 48 a, b zeigen zwei solche Zellen vom Hunde. Fig. 53 zwei vom Rinde, welche breiter sind und eine Menge von Aesten besitzen.

Die radialen Stützzellen der Säuger sind am meisten denen der Fische ähnlich. Es sind platte, glatte, faserähnliche Zellen mit deutlicher Kernanschwellung, oder mehr seitlich ansitzendem Kern, das ist verschieden je nach den Dimensionen beider. Die Kerne liegen wieder in der inneren Körnerschicht. Die Theilung des äusseren Zellendes beginnt verschieden früh, gewöhnlich in der Gegend der äusseren granulirten Schicht, oder besser der concentrischen Zellen, aber mitunter auch schon früher. Gemäss der relativ grossen Dicke der äusseren Körnerschicht sind die Äste lang und zart und verästeln sich selbst wieder vielfach. Sie endigen an der Limitans entweder einfach ohne Anschwellung oder mit kleinen Kegeln. Von diesem äusseren Zellende können mitunter auch schon in der inneren Körnerschicht kleine derartige Fortsätze abgehen. Ebenso können membranöse Ausbreitungen oder Membranen zwischen den Ästen vorkommen, doch sind es Ausnahmen. Das innere Zellende läuft als gerader glatter Stamm durch die innere granulirte hindurch und endigt entweder einfach kegelförmig anschwellend, oder es findet auch eine kurze Theilung statt, die entweder schon im inneren Theile der inneren granulirten Schicht beginnt, oder auch erst in der Ganglienschicht ihren Anfang nimmt. In diesem Falle endigt natürlich jeder Ast wieder mit kegelförmiger Anschwellung. Zwischen diesen Ästen können sich wieder Membranen ausspannen. Je weiter diese Stützzellen von dem mittleren Theile der Retina nach den Randpartien zu abliegen, um so kürzer sind sie natürlich, und um so mehr mit Dornen versehen, ganz ähnlich wie bei den anderen schon betrachteten Classen. Taf. XXIII, Fig. 45 a, b, c, d stellen solche Zellen vom Kaninchen dar, an denen man verschiedene Formen der inneren Verästelung wahrnimmt. Die letzte zeigt eine ganz niedrige Zelle aus der Randpartie mit mehrfachen Dornen. Fig. 49 a, b solche vom Hunde, Fig. 54 eine vom Rinde mit einfacher kegelförmiger Endigung. Auf dem Querschnitt Taf. XXIV, Fig. 95 vom Kaninchen sieht man leicht die Kerne der radialen Zellen und den Durchtritt...
dieser durch die innere granulirte Schicht, sowie die Theilung des inneren Endes, die beim Kaninchen eine recht ausgeprägte ist.

Maaße:

Ich will die Maasse hier nicht von sämtlichen untersuchten Thieren geben, es mögen einige Beispiele genügen.

Kaninchen:

m. u. inn. c. k. Stz.: grösster Durchmesser 417—448 μ.
c. kl. Stz.: " 240—291 μ.
r. Stz.: Länge 94—117 μ.

Hund:

m. u. inn. c. k. Stz.: grösster Durchmesser 304—312 μ.
c. kl. Stz.: " 240 μ.
r. Stz.: Länge 125—146 μ.

Ebensowenig, wie ich die kernhaltigen Zellen auf einem Schüttelpräparat sehen konnte, habe ich die kernlosen gesehen, die ja natür-
lieh nur auf ganz gut gelungenen derartigen Präparaten zu finden sind. Auf Querschnitten lassen sich diese Zellen ja auch nicht nachweisen. Auch ihre Existenz ist nach ihrem allgemeinern Vorkommen bei Säugern in hohem Grade wahrscheinlich, aber eben noch nicht nachgewiesen.

siren, ein Gerüst darstellen, welches die in den betreffenden Schichten liegenden Zellen trägt. Dass die an den Zellen vorhandenen Aeste (also namentlich die in der äusseren Körnerschicht regelmässig vorkommenden) natürlich zur Stütze der anliegenden nervösen Theile dienen, ist ja klar, das sieht man ja auch aus dem Anliegen einer Anzahl von Körnern bei Isolirung der Zellen, aber dass ein solches Korbwerk gebildet wird, habe ich nicht sehen können. Ebensowenig habe ich jemals einen Zusammenhang zwischen den radialen Zellen und den Scheiden der Zapfenfasern finden können.

Nachdem ich so gezeigt habe, dass die concentrischen Zellen allen Thierklassen zukommen, und welches ihre sowie der Radialzellen Form und Lage ist, bleibt mir noch übrig anzugeben, welche Unterschiede für diese Zellen existiren, je nachdem sie mehr nach der Mitte des Auges zu liegen oder nach dem Rande, und wie sie sich an der Ora serrata verhalten.

An der Stelle des Opticusdurchtritts werden beide Zellarten einfach durchbrochen und hören dicht an den Opticusfasern scharf auf.

der gleiche und auch die Modificationen dieses Grundprincips waren nur sehr unbedeutende. Ich habe es daher für unnöthig gehalten, eine Anzahl verschiedener Abbildungen von Thieren verschiedener Klassen zu geben, und habe dafür als Beispiel eines gewählt, bei dem die Verhältnisse ungemein klar und anschaulich sind, den Hecht. Merk el hatte seiner Zeit dieses Thier als Vertreter der Fische gleichfalls gewählt, und so ist es ja leicht die beiden Abbildungen mit einander zu vergleichen. Von der Mitte nach der Ora zu werden alle Schichten der Retina allmählich dünner, doch bleiben alle Schichten noch bis zum Ende bestehen, woraus folgt, dass das Aufhören der eigentlichen zum Sehen dienen den Retina ein sehr plötzliches sein muss, dass dieses in der That so ist, sieht man an der Abbildung Taf. XXIV, Fig. 89 deutlich. Die Nervenfaserschicht ist noch bis zum Ende hin deutlich, sie hört eben so auf, wie Merk el sagt, dass zu der letzten Ganglien zelle die letzte Nervenfaser geht. Die Ganglienzellen hören aber erst sehr spät auf; wie man sieht, biegen sie aufwärts um, den inneren Körnern entgegen. Sie können das thun, da die innere granulirte Schicht stumpf kegelförmig endigt und so am Ende der Retina eine Verbindungsstrasse zwischen Ganglienzellenschicht und innerer Körnerschicht gebildet wird. Ob dieses bei allen Thieren stattfindet, ist mir allerdings zweifelhaft, bei der Krähe z. B. biegt die innere granulirte Schicht steil nach oben, um sich allmählich zuschärfend zu endigen, hier würde ja nun allerdings an diesem Ende auch eine Verbindung vorhanden sein, doch scheinen da keine Ganglienzellen mehr zu liegen. Nun, keinenfalls ist diese Verbindung von irgendwelcher Bedeutung, ihre grössere oder ge ringere Deutlichkeit hängt eben von dem früheren oder späteren Aufhören der inneren granulirten Schicht ab. Mit dieser Schicht hören auch die Spongioblasten auf, welche sich nach der Kegel spitze hin leicht umbiegen. Die innere Körnerschicht wird eigent lich nicht viel schmaler, im Gegenteil ganz gegen das Ende hin liegen beim Hecht die Körner noch etwas weiter von einander und so in breiterer Schicht, da hier eben durch den Wegfall der inneren granulirten mehr Raum bleibt. Auch dieses ist natürlich bei den Thieren anders, bei denen sich die innere granulirte weiter erhält. Einen mächtigen Dickenunterschied zeigt die Schicht der concentration Zellen. Wenn man Taf. XXIV, Fig. 88 mit der der Ora serrata vergleicht, wird man diesen Unterschied leicht sehen.
Schon ein Ende vor der Ora serrata rücken die Zellreihen enger an einander und in der Nähe derselben hören zuerst die innersten Lagen auf regelmässig sichtbar zu sein, bis sie schliesslich ganz verschwinden. Bis zuletzt hin sichtbar bleibt nur die mittlere Schicht, welche ja die grössten (wenigstens dicksten) Zellen besitzt; sie kann man in der That bis zum Aufhören der anderen Schichten verfolgen. Doch werden ihre Zellen sehr klein, und immer kleiner je näher dem Ende sie liegen. Die Schicht der äusseren concentrischen Zellen kann man ebenfalls fast ganz bis zum Ende verfolgen. Vielleicht gehen sie in der That bis zum Ende, denn es ist bei ihrer Kleinheit, sie werden hier natürlich auch noch kleiner, sehr schwer zu sagen, wo die letzte liegt. Ich habe sie jedenfalls bis ganz unmittelbar vor das Ende verfolgen können, aber eben nicht ganz so weit als die mittleren. Sehr interessant ist es nun, dass hier an der Ora, wo die Schichten sich schliesslich ja ziemlich drängen, weit mehr als in den mittleren Partien, diese äusseren Zellen des Hechts, die ja sonst immer nach innen von der äusseren granulirten Schicht liegen, auch durch diese durchtreten können, so dass man sie dann unmittelbar an der äusseren Seite derselben sieht, wenigstens an der äusseren Seite der inneren Abtheilung dieser Schicht nach meiner oben gegebenen Beschreibung. Ein Zeichen wieder, wie wenig die äussere granulirte Schicht mit diesen Zellen principiell zu thun hat, und ein Beweis mehr dafür, dass wir die aussen an der äusseren granulirten Schicht befindlichen Zellen von Torpedo, Ceratodus etc. als diesen homolog anzusehen haben. Merkei erwähnt die concentrischen Zellen auch, hat dieselben aber nicht bis zum Ende verfolgt. Die äussere granulirte Schicht wird in ihrem innern Theil gegen die Ora zu immer dünner, lässt sich aber bis zum letzten äusseren Korn verfolgen. Der äussere Theil, von dem ich oben angab, dass er ein netzförmiges Gefüge zeige, hat hier dieselbe Beschaffenheit, wird aber auch schmäler, und die Faserschicht, welche noch weiter nach aussen lag, wird zunächst sehr dünn, um schliesslich nicht mehr erkennbar zu werden. Der netzförmige Theil besitzt auch hier wieder öfters recht grosse Maschen, welche bei der Schmalheit der Schicht um so mehr in's Auge fallen. Bei diekeren Schnitten kann man sich über dieselben schlecht orientiren, sie erscheinen da als unverständliche Hohlräume, scheinen aber nichts besonders Wichtiges in Wirklichkeit zu sein. Die Stübben und Zapfen lassen
studien zur vergleichenden histologie der retina.

sich, immer kleiner werdend bis zum letzten äusseren Korn verfolgen, wie das Merk el des Genauer angeschrieben hat. Die radialen Zellen werden gegen das Ende der Retina deutlicher sichtbar, wie Merk el das auch hervorhebt, ich habe oben schon wiederholentlich auf diese kurzen dicken, dor nigen Zellen aufmerksam gemacht. Ferner scheinen an dieser Stelle der Netzhaut die ungetheilten innern Enden zu überwiegen auch bei den Thieren, welche sonst langgetheilte innere Enden haben, z. B. den Reptilien und Vögeln. Hier werden die Theilungen zunächst kürzer und dann kommen auch einfach kegelförmig endigende Zellen vor, die ja freilich auch den mittleren Theilen der Retina nicht ganz fehlen. Es scheint mir diese Erscheinung dafür zu sprechen, dass die Grundform der radialen Zelle die mit einfachem inneren Ende ist, und dass die getheilten sich aus irgend welchem Grunde aus jener erst entwickelt haben. Diese Entwicklung muss allerdings schon sehr früh in der Thierwelt vor sich gegangen sein, da wir bei den Haien schon ganz langgetheilte Enden finden, und bei Petro myzon wenigstens kurze Theilungen. Hier am Rande der Retina und weiter in der Pars ciliaris kann man die radialen Zellen aber sicher in ihren einfachsten und damit ursprünglichsten Verhältnissen kennen lernen, und so sind die Formen, welche sie hier haben, auch voraussichtlich der Grundform am ähnlichsten. Nachdem die eigentlichen Retinasechichten aufgehört haben, bleiben die radialen Zellen allein übrig. Zuerst den letzten Zellen der Retina noch sehr ähnlich, nur an beiden Enden ungetheilt, ganz langen Cylinderzellen, den Linsenfasern z. B. ähnlich, nehmen sie ziemlich rasch an Länge ab, und an Breite zu, so dass schliesslich eine Epithelschicht übrig bleibt, gebildet zuerst noch aus Cylinderzellen mit rundlichem oder länglich ovalem Kern. Sehr bald aber werden die Zellen so niedrig und breit, dass die Zelle nicht mehr cylindrisch, sondern kubisch oder breit kubisch genannt werden muss, und dass die Kerne oft queroval stehen. So zieht dieses Epithel weiter, doch ist die Zellbeschaffenheit durchaus nicht gleichmässig, es können wieder Stellen kommen, an denen das Epithel höher wird, und die Kerne rund oder längsoval erscheinen, und auch bei den verschiedenen Thieren sind hier sicher Unterschiede vorhanden. Es ist ja auch nur eine ganz gleichgültige Modification der Form, ob die Zellen etwas höher oder etwas breiter sind.

aus dem eben Gesagten folgt, dass, während die radialen
Zellen durch die ganze Retina gefunden werden, sowohl vor wie hinter der Ora serrata, die concentrischen Zellen nur in der eigentlichen Retina vorkommen. Während jene gewissermaassen den Grundstock der Retina bilden, sind diese nur in einer bestimmten Partie zwischen jene eingelagert. Es spricht dies dafür, dass sie, wie das ja auch von vorn herein anzunehmen war, eine reine Stützfunction auszuüben haben. So lange nervöse Elemente in der Retina eingelagert sind, so lange sind diese Zellen vorhanden, um sie in concentrischer Richtung zusammen zu halten.

Nachdem so die Form- und Lageverhältnisse dieser Zellen bei dem erwachsenen Thiere klar gelegt waren, lag es nahe zu fragen, wie sich dieselben während der Entwicklung verhielten. Da ich wirklich entwicklungs geschichtliche Forschungen für diese vorliegende Untersuchung ausgeschlossen hatte, um die Dauer der Arbeit nicht noch mehr zu verlängern, so habe ich mich auf eine kurze Betrachtung der Entwicklung nach der Geburt beschränkt. Leider ist diese Beschränkung insofern noch eine grössere geworden, als ich die Untersuchung zu einer Zeit unternahm, in der ich nicht nur die äusseren concentrischen Zellen, sondern auch die kernlosen, wenigstens bei Säugern noch nicht gefunden hatte. Da ich die Untersuchung vornahm bei jungen Katzen in der ersten Zeit nach der Geburt, so wären die äusseren concentrischen Zellen nicht in Frage gekommen, da sie ja den Säugern fehlen, wohl aber wären die kernlosen zu untersuchen gewesen. Da ich nun aber seitdem nicht wieder zu diesem Theile meiner Untersuchung habe kommen können, so will ich wenigstens das, was ich über die kernhaltigen concentrischen Zellen gefunden habe, mittheilen.

Taf. XXII, Figg. 37—41 und Taf. XXIII, Fig. 42 zeigen solche Zellen von verschiedenen alten Katzen. Wie man leicht bemerkt, wenn man die Reihe der Abbildungen betrachtet, nehmen die Zellen mit dem Alter des Thieres an Grösse und Masse zu. Die Ausläufer werden länger und verästeln sich mehr und mehr und zugleich nehmen die Zellkörper und Ausläufer an Volumen zu. Auch der Kern scheint zu wachsen, doch ist das nicht so genau zu verfolgen, da der Kern nicht eine kugelförmige, sondern eine mehr ellipsoide Gestalt besitzt, und leicht bei den verschiedenen Zellen in etwas veränderter Lage beobachtet werden kann, wobei er dann natürlich verschieden gross erscheinen wird. Immerhin ist mir aber auch beim Kern eine Grössenzunahme wahrscheinlich. Was die Grössenzunahme
des Zellkörpers anlangt, so ist der Beobachter auch hierbei natür-
lich manchem Irrthum ausgesetzt, da, wie wir das schon bei den
Massen der Zellen von erwachsenen Thieren bisher gesehen haben,
die Zellen einer Retina nicht alle gleich gross sind. Immerhin
sind die Maasse und das ganze Aussehen der Zellen bei jungen
Thieren so wesentlich verschieden von dem bei erwachsenen, und
noch zwischen den einzelnen Alterstufen zeigen sich so deutlich
dem entsprechende Unterschiede, dass über ein wirklich vorhan-
denes Wachsthum kein Zweifel sein kann. Fig. 37 a, b zeigt
zwei Zellen von einem einen Tag alten Kätzchen, der Zellkörper
ist sehr klein, die Fortsätze sind kurz und zart und kaum ver-
ästelt. Bei einem Kätzchen von vier Tagen (Fig. 38) sind die
Zellen schon grösser, die Fortsätze länger und theilweise verästelt.
Bei einem sieben Tage alten Thiere (Fig. 39) zeigt der Zellkörper
und mit ihm die Fortsätze Zunahme der Masse; bei einem drei-
zehn Tage alten Kätzchen (Fig. 40) sind die Zellen sowohl was
Masse wie Länge der Fortsätze anlangt, schon ganz respectabel.
Noch grösser und stärker verästelt bei einem Thiere von einund-
zwanzig Tagen (Fig. 41), doch findet noch immerhin Wachsthum
statt, wie der Vergleich mit Fig. 42 lehrt, welche eine Zelle aus
der Retina eines alten Katers darstellt. Das Wachsthum in den
ersten Tagen nach der Geburt scheint ein sehr schnelles zu sein.
Besondere Altersveränderungen der Zellen bei alten Thieren habe
ich nicht bemerken können, insbesondere scheint der Kern immer
erhalten zu bleiben, geradeso wie bei den radialen Stützzellen.
Wenn man Taf. XXIII, Fig. 50 a, b, welche Zellen aus der
Retina eines 14 Tage alten Hundes darstellen, mit Taf. XXIII, Fig.
47 a, b vergleicht, welche solche aus der Retina eines erwachsenen
Hundes wiedergeben, so wird man gleichfalls einen bedeutenden
Grössenunterschied finden. Die Grösse der Kerne erscheint hier
dagegen gleich. Da nun auch die von der einundzwanzigtagigen
Katze abgebildete Zelle einen Kern besitzt, der an Grösse dem
der von dem alten Kater herrührenden Zelle gleichkommt, so liegt
die Annahme nahe, dass der Kern entweder zunächst schneller
wächst als die Zelle, so früher ein Grössenmaximum erreicht und
dann constant bleibt, während die Zelle noch weiter wächst, oder
dass der Kern zunächst schneller wächst bis zu einem bestimmten
Stadium, und von da ab nur ein äusserst langsames Wachsthum
besitzt. Um zwischen diesen beiden Möglichkeiten zu entscheiden,
müßte man aber jedenfalls eine grosse Anzahl von Thierindividuen darauf hin untersuchen.

Auf Petromyzon folgen dann zwei Reihen von Thieren, bei deren jeder eine Fortentwicklung derart zu constatiren ist, dass die Zellschichten an Zahl abnehmen, die Zellindividuen sich mehr ausbilden und dabei dünner, platter werden.

Von den Plagiostomen zeigt Acanthias noch drei kernhaltige Schichten, während die kernlosen fehlen. Die äusseren Zellen sind wieder klein wie bei Petromyzon, die mittleren noch recht dick, aber doch schon mehr in die Breite entwickelt, die inneren platte, mächtig verästelte Zellen mit wenig Mittelkörper.

Bei Torpedo werden die äusseren Zellen so klein, dass nur der Kern noch deutlich sichtbar ist auf dem Querschnitt und Zerzupfungspräparat und die mittleren und inneren werden sehr platt, zeigen gute Fortsatzentwicklung, aber nicht so lange Fortsätze wie Acanthias. Auch hier sind kernlose Zellen zweiselhaft, möglicherweise zwischen den mittleren und äusseren vorhanden.
Bei Acanthias wie bei Torpedo besitzen die radialen Zellen langgeteilte innere Enden.

An die *Ganoiden* schliessen sich als Fortsetzung die *Dipnoer* an.

Ceratodus hat noch deutlich alle drei Arten der kernhaltigen Zellen, aber bei den äusseren sind die Zellkörper augenscheinlich so unbedeutend geworden, dass man auf Querschnitten und Zerzupfungspräparaten nur Kerne sieht. Die mittleren und inneren Zellen sind platt geworden mit guter Ramification. Die Aeste der Zellen sind indess nicht so lang wie beim Stör.

Ob kernlose Zellen vorkommen, ist fraglich. Sind sie vorhanden, so liegen sie zwischen der mittleren und äusseren Schicht. Die radialen Zellen sind am inneren Ende kurz geteilt, oder einfach, sind aber sehr breit geworden.

Sämtliche Elemente der Retina haben an Grösse zugenommen, hauptsächlich sind dabei die Kerne gewachsen.

Zwischen mittleren und äusseren Zellen liegen kernlose, doch war es nicht möglich zu sagen ob einfache oder verästelte. Die Radialzellen sind einfach am inneren Ende, noch sehr breit, aber nicht mehr so wie bei Ceratodus.
Die sämtlichen Retinaclemente, namentlich die Kerne sind sehr gross.

Bei Protopterus tritt eine wirkliche Reduction der concentrischen Zellen, ein Rudimentärwerden derselben ein.

Die Teleostier schliessen sich am meisten von den bisher genannten Thieren noch an Stör an, doch sind auch diesem gegenüber wesentliche Unterschiede vorhanden. Sie bilden eine Gruppe für sich.

Die radialen Zellen sind am inneren Ende einfach oder kurz getheilt.

Einigermaassen wenigstens scheinen sich die anderen Fische dem Hecht anzuschliessen. Doch sind der untersuchten da noch zu wenige.

Bis hierhin sind alle Thiere, mit Ausnahme von Protopterus, mit anastomosirenden kernhaltigen concentrischen Zellen versehen. Im Durchschnitt ferner sind die mittleren Zellen die dicksten, haben aber kürzere Ausläufer als die platteren inneren. Wo die Fortsätze sich zusammenfügen, sind häufig Zellgrenzen sichtbar, doch können dieselben auch verschwinden. Im allgemeinen findet man sie leichter bei den mittleren Zellen als bei den inneren, doch kommen sie auch hier sicher vor. Ebenso verhalten sich bei guter Ausbildung die äusseren.

Sowohl die kernhaltigen wie die kernlosen concentrischen Zellen sind sehr klein.

Die radialen Zellen sind am inneren Ende einfach oder ganz kurz getheilt. Dieselben sind ungemein stark entwickelt.

Triton zeigt ähnliches, nur sind die concentrischen Zellen noch rudimentärer und noch mehr scheint das bei Salamandra und Axolotl der Fall zu sein, bei denen ich die betreffenden Zellen noch nicht finden konnte.

Die Amphibien setzen also den rudimentären Typus von Protopterus fort. Die einzelnen Elemente der Retina im allgemeinen, namentlich die Kerne, sind ja auch bei ihnen sehr gross.

Die Reptilien stehen den Amphibien ziemlich fern, sind unter einander aber sehr ähnlich, wenigstens was Chelonier und Saurier anlangt, auf die sich die Untersuchungen beziehen.

Die radialen Zellen haben langgetheilte innere Enden, ganz wie bei den Plagiostomen.
Die Reptilien zeigen also nicht den rudimentären Bau der Amphibien, doch sind die Elemente klein, wenigstens die kernhaltigen, die kernlosen grösser, theilweise sogar sehr gross.

Die radialen Zellen sind ebenso wie die der Reptilien langgetheilt am inneren Ende.

So stehen also Reptilien und Vögel enge zusammen.

Die Säugethiere verhalten sich dagegen wieder ganz abweichend, sowohl von Amphibien wie von Reptilien und Vögeln.

Auch bei den Säugern ist eine Reduction der Schichten eingetreten, aber die Zellindividuen sind so ausserordentlich stark entwickelt, wie kaum bei den Fischen.

Man findet auch hier wieder eine Schicht von kernhaltigen concentrischen Zellen, aber da die Ausläufer dieser Zellen viel länger sind als die Zwischenräume zwischen den Zellmitten, so liegen die Ausläufer benachbarter Zellen immer über einander und durch einander. Die Zellen sind wieder platt und besitzen durchschnittlich einen kleinen Mittelkörper, namentlich im Verhältniss zu den Ausläufern. Diese letzteren anastomosiren wohl nicht mit einander, sondern durchflechten sich nur zu einem unentwirrbaren Filz.

In diesem Filz mit darin liegen, wie es scheint, auch die kernlosen, die ja wahrscheinlich an der äusseren Seite der kernhaltigen anliegen. Auch diese sind sehr gross, entwickelt und verästelt, doch lassen sie immer noch die Abstammung von einer platten, spindelförmigen Faser erkennen.

Die radialen Zellen sind am inneren Ende kurz getheilt oder einfach.

Von Protópterns an, oder vielleicht schon früher treten also kernlose Zellen nach aussen von der mittleren kernhaltigen Schicht auf.

Die kernhaltigen Zellen sind überhaupt die konstanteren, die
Grundelemente, zwischen welche sich die kernlosen wechselnden schieben oder an welche sie sich anlegen.

Wir sehen aus dieser kurzen Zusammenstellung, dass im Allgemeinen bei höherer Entwicklung die Dicke der concentrischen Schichten abnimmt. Hierbei brauchen die einzelnen Zellen aber durchaus nicht rudimentär zu werden, sie können ebenso gut eine ganz exquisite individuelle Entwicklung zeigen.

Wir finden in der Thierreihe beides. Bei den Amphibien die wirkliche Rudimentärbildung, bei den Säugern die ausgezeichnete individuelle Entwicklung, die Reptilien und Vögel stehen so mitten inne. In allen Fällen wird durch die Verdünnung der Schichten dem Lichte leichter Zutritt zu den Neuroepithelien gewährt.

Je nach der Ausbildung der concentrischen und der radialen Zellen und je nach der Stärke derselben wird die Retina verschieden leicht in verschiedenen Richtungen reissen. Bald leichter parallel der Oberfläche, dann natürlich an der Stelle der concentrischen Zellen (daher die von G o l g i und M a n f r e d i bei der Retina des Pferdes angewandte Methode der Isolirung dieser Schicht), bald leichter in radiärer Richtung.

In allen Fällen scheinen die concentrischen Zellen nach dem Rande der Retina hin an Grösse abzunehmen. An der Ora serrata hören sie auf. Am weitesten können hier die mittleren Zellen, die ja auch die voluminösesten sind, verfolgt werden.

Zu der äusseren granulirten Schicht steht die Schicht der concentrischen Zellen nur in zufälliger Beziehung. Je nachdem der Nervenplexus, der jene charakterisirt, entwickelt ist, und je nachdem die concentrischen Schichten entwickelt sind, schieben sich die beiden durcheinander. Da die radialen Zellen durch die Lücken zwischen den concentrischen Zellen hindurchtreten müssen, um zur äusseren Körnerschicht zu gelangen, und da sie sich gewöhnlich nicht früher oder nicht viel früher in ihre äusseren Aeste auflösen können bis das Netz der concentrischen Zellen passirt ist, so liegt der Anfang der äusseren Verästelung der Radialzellen gewöhnlich in der Höhe der concentrischen Schicht resp. der äusseren Abtheilungen derselben. Demgemäss kann hier erst die äussere Körnerschicht beginnen, deren Zellen ja zwischen die Aeste der Radialzellen sich hinein begeben müssen, und da dicht an dem Anfange der äusseren Körnerschicht auch der Nervenplexus seine
natürliche Lage hat, so wird dieser und damit die granulirte Schicht entweder nach aussen von den äusseren kernhaltigen Zellen oder zwischen diesen und den mittleren sich einlagern. Da also, wo die äusseren Zellen fehlen, wird dieselbe an der äusseren Seite der übrig bleibenden mittleren kernhaltigen Zellen liegen. Finden sich zwischen den äusseren und mittleren kernhaltigen Zellen nun noch kernlose, so werden diese eben mit der granulirten Schicht entweder ganz oder zum Theil sich mischen, und so werden eventuell auch die Fortsätze der kernhaltigen Zellen in diese eintreten können. Bei Thieren, bei denen die äussere granulirte Schicht nur sehr schwach entwickelt ist, wie bei Petromyzon, Acanthias treten die äusseren Körner, wie es scheint, bis zur Theilungsstelle der radialen Stützzellen herab zwischen die concentrischen Zellen hinein.

In der ersten Zeit nach der Geburt scheint ein sehr intensives Wachsthum der kernhaltigen Zellen stattzufinden. Die kernlosen sind daraufhin nicht untersucht. Vielleicht verhalten sich bei jenem Wachsthum die Kerne etwas anders als die Zellen.

Bei Thieren die zeitlebens wachsen, wachsen wahrscheinlich auch diese Zellen fort, dafür spricht auch die Bemerkung Dogiel's bei seiner Untersuchung der Störretina, dass die Grösse der betreffenden Zelle sich nach der Grösse des Thieres richte.

Die radialen Zellen nehmen nach dem Rande der Retina zu auch an Länge ab, an Dicke häufig zu. Sie werden daselbst ausserdem leicht dornig und an den innern Enden häufig mehr einfach. Sie bilden die Pars ciliaris.

Wie ich im Obigen schon mehrfach hervorgehoben habe, sind die äusseren kernhaltigen concentrischen Zellen nicht so genau untersucht worden wie die anderen. Ich wurde eben erst ganz zuletzt auf dieselben als hierher gehörige Zellen aufmerksam und da fehlte es schon vielfach an dem nötigen Material, um sie genau zu studiren. Die ganze Annahme, dass sie zu den concentrischen Zellen gehören, stützt sich im wesentlichen auf ihre Lage, nach der sie sich unmittelbar an die anderen concentrischen Zellen anschliessen und auf den Befund beim Hecht, bei welchem sie sich gut entwickelt, direkt als concentrische Zellen erkennen lassen. Sie haben übrigens gemäss ihrer Kleinheit und ihrem frühen Aufhören in der Thierreihe jedenfalls die untergeordnete funktionelle Bedeutung von den drei Arten der kernhaltigen concentrischen
Studien zur vergleichenden Histologie der Retina.

Zellen. Vielleicht sind sie gut entwickelt gewesen bei Thieren, die noch tiefer standen als Petromyzon, und von denen der Hecht seinen Ursprung ableitet.

Es ist aus dem Gesagten überhaupt ersichtlich, dass diese Stützzellen, sowohl die concentrischen wie die radialen wohl geeignet sein dürften, als Leitfaden für phylogenetische Feststellungen zu dienen. Dieselben haben so charakteristische Formen, und scheinen diese so treu zu bewahren, dass es wohl lohnen dürfte, sie bei recht vielen Thieren genauer zu untersuchen. Wollte man dabei wirklich zu brauchbaren Resultaten kommen, so müsste man allerdings ein ungewöhnlich ausgebreitetes und gutes Material zur Verfügung haben. Ich halte es auch für wahrscheinlich, dass man diese Stützelemente für derartige Untersuchungen brauchbarer finden dürfte als die nervösen, da die letzteren als für die Function des Organs wichtigeren leichter in Folge bestimmter Functionsveränderungen oder Functionsentwickelungen bedeutendere Veränderungen aufweisen werden als jene. Es ist ja allerdings anzunehmen, dass mit jeder Änderung der Schelemente auch die sie umgebende und mit ihnen zugleich wachsende Stützsubstanz sich etwas ändern wird, doch ist es wahrscheinlicher, dass charakteristische Formen bei diesen festgehalten werden als bei jenen nervösen.

Nachdem ich die Resultate meiner Untersuchungen somit klar gelegt habe, möchte ich zum Schlusse noch auf die Ansichten eines Forschers über den Bau der Retina eingehen, die von denen aller anderen sehr wesentlich abweichen, ich meine auf die Ansichten von W. Krause.

In einer 1868 erschienenen Arbeit (12) behauptet Krause, dass die äussere granulirte Schicht zusammengesetzt sei aus einer Lage platter, verästelter, theilweise kernhaltiger, theilweise kernloser Zellen, welche anastomosirend eine durchlöcherte Haut, die Membrana fenestrata bilden. Diese Membran stelle die innere Partie der äusseren granulirten Schicht dar, die äussere Partie entsteht durch die hier dicht nebeneinander liegenden Fusskegel der Stäbchen- und Zapfenfasern und da diese granulirt seien, so verleihen sie namentlich der Schicht den granulirten Typus, zumal die kleinen Stäbchenkegel. Sonstige Granula existirein nicht. An die platten Zellen der Membrana fenestrata sollen sich nun einerseits ansetzen die Stützfasern und somit nur von dem Margo
limitans bis zu dieser Membran verlaufen. Andererseits sollen von aussen her die Stäbchen- und Zapfenfasern bis zu der Membran verlaufen und mit den Fusskegeln sich an dieselbe festheften, so dass auf diese Weise durch Vermittlung der platten Zellen der Membrana fenestrata die Stäbchen- und Zapfenfasern mit den Radialfasern in Verbindung stehen, woraus dann natürlich weiter folgt, dass Stäbchen- und Zapfenfasern gerade wie die Radialfasern der Stützsubstanz angehören. So soll der Bau der Retina in allen Wirbelthierklassen sein. Die Fasern, welche in der äusseren Körnerschicht sich scheinbar von der äusseren granulirten Schicht zur Limitans ext. hinziehen, sollen nur Stäbchenfasern sein, diese und die Zapfenfasern überhaupt die einzigen Elemente, welche die beiden obengenannten Schichten an einander halten. Die bei den Fischen nach innen von der äusseren granulirten Schicht gelegenen Zellen (unsere mittleren und inneren concentrischen Zellen) werden als Membrana perforata von der fenestrata unterschieden.

In einer zweiten 1884 erschienenen Mittheilung (30) fasst Krause seine inzwischen gewonnenen Resultate zu neuen Feststellungen zusammen. Er verteidigt zunächst unter Anwendung neuer Untersuchungsmethoden seine früheren Angaben. Er giebt Abbildungen der Membrana fenestrata nach sehr feinen Flächenschnitten, zeichnet Radialfasern im Zusammenhange mit Stäbchen- und Zapfenfasern, und unterscheidet endlich drei aus Zellen zusammengesetzte, flächenhaft, der Fläche der Retina parallel ausgebreitete Schichten: zu äusserst die Membrana fenestrata, dann weiter nach innen gelegen die Membrana perforata, dann noch weiter nach innen das Stratum lacunosum. Es besitzen von diesen Schichten:

Die Säuger: Membrana fenestrata und Membr. perforata.
Die Vögel: Membr. fenestrata und Strat. lacunosum.
Die Fische: alle drei.

Bei diesen letzteren beschreibt Krause die einzelnen Schichten folgendermaassen (30. p. 232):

1) Membr. fenestrata. Am meist chorioidealwärts in unmittelbarem Anschluss an die Stäbchen- und Zapfenkegel liegt die von mir beim Hecht, Aal, Carpio carpio, und Carpio carassius beschriebene Membr. fenestrata. Sie besteht aus platten anastomosirenden, nicht granulirten Zellen. Nur selten lassen die Zell-

Von den Amphibien und Reptilien wird nur kurz angegeben, dass bei Salam. macul. auf Querschnitten „die in Abständen liegenden Zellen der Membr. perforata sofort auffallen," und dass die Membr. fenestrata nachgewiesen sei bei Lacerta agilis, Salam. macul. und beim Frosch.

Bei den Vögeln folgt auf die Membr. fenestr. (die der oben bei den Fischen gegebenen Beschreibung entspricht) „glaskörperwärts eine einfache Lage dünner, abgeplatteter Zellen, welche voll-
kommen denen des Stratum lacunosum gleichen, nur dass ihre absoluten Dimensionen viel geringer sind. Ihre fadenartigen Ausläufer sind auch an Flächenschnitten, welche die Membrana fenestrata enthalten, sichtbar.

Die Maassangaben, welche Krause von den Zellen der Membr. perfor. bei den Säugern giebt: Schaf 17 μ, Schwein 20 μ, zeigen, dass er von denselben nur kleine Stücke, wie man sie auf Retinaquerschnitten oder auch Schrägschnitten wohl sieht, vor Augen gehabt hat.

werden wohl die Beobachtungen von Reich angeführt, wird aber nichts Neues hierüber gegen früher gesagt. Auf das Verhalten der Radialzellen zu den concentrischen und den Neuroepithelen bin ich schon öfters oben genügend genau eingegangen, um es hier nicht weiter besprechen zu müssen.

Dass die hier von mir beschriebenen Stützzellen im Prinzip denen des Gehirns und Rückenmarks entsprechen müssen, ist selbstverständlich, da die Retina ein Gehirnteil ist. Ich habe indess bei den vorliegenden Untersuchungen nicht näher auf die Frage, die an sich eine grössere Arbeit erfordern würde, eingehen können. Ich habe nur auf Taf. XXIV, Fig. 99 drei Zellen von verschiedenen Grössen und Formen dargestellt, welche auf dieselbe Weise aus dem Grosshirn des Hundes isolirt sind, wie die von mir dargestellten Zellen aus der Retina. Auch die Vergrösserung ist dieselbe. Man sieht, dass die eine Zelle bei a an Grösse den Retinazellen nicht nachsteht, eine mittelgrosse und kleine zeigen Fig. 99 b, c. Ich möchte hier noch die Bemerkung anknüpfen, dass in der Retina natürlich in der Nervenfaserschicht auch kleine derartige Zellen vorkommen, die in ihrem Aussehen den bekannten Deiter'schen Zellen des Centralnervensystems durchaus ähnlich sind. Auch Golgi und Manfredi (15. Fig. 1) bilden solche aus dieser Schicht ab. Wir würden also auch in der Retina wie im Grosshirn grosse und kleine derartige Zellen zu unterscheiden haben. Gierke hat in seinen Untersuchungen der Stützsubstance des Centralnervensystems (38. 39.) angegeben, dass auch in dieser kernhaltige und kernlose Stützzellen vorkommen, leitet aber die letzteren aus jenen als durch Altersveränderung entstehend ab. Nun ist es mir für die kernlosen Zellen der Retina ja auch äusserst wahrscheinlich, dass sie während der Entwickelung Kerne haben, W. Müller (19) gibt ja auch an bei Petromyzon direkt die Umbildung derselben aus kernhaltigen Zellen verfolgt zu haben, doch haben sie mit den nach der Geburt kernhaltigen Zellen keinen weiteren Zusammenhang, diese werden nicht kernlos und gehen nicht in die kernlosen über, die ja auch der ganzen Form nach wesentlich anders sind. Da die Neuroepithelien den Zellen des Centralcanals entsprechen, so müssten die Homologa der Stützzellen auch hier gesucht werden.

Zum Schlusse ist es mir eine angenehme Pflicht allen denen, welche mich bei dieser Arbeit mit Rath und Material unterstützt haben, meinen Dank auszusprechen.
5) Leydig: Anatomisch-Histologische Untersuchungen über Fische und Reptilien p. 9. Taf. I, Fig. 5.
13) Landolt: Beitrag zur Anatomie der Retina vom Frosch, Salamander und Triton. 1 Taf. Arch. f. mikrosk. Anat. VII. 1871.

22) Biologische Untersuchungen. Herausgegeben von Prof. Dr. G. Retzius in Stockholm. 1881. p. 89—100. Taf. XI.

27) Lehrbuch der Anatomie der Sinnesorgane von Dr. G. Schwalbe. Erlangen 1883.

Erklärung der Abbildungen auf Tafel XXII, XXIII und XXIV ¹).

Die nachfolgenden Zeichen haben bei allen Abbildungen die folgende Bedeutung:

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>äu. c. k. Stz.</td>
<td>äußere concentrische kernhaltige Stützzellen.</td>
</tr>
<tr>
<td>äu. gr.</td>
<td>äußere granulirte Schicht.</td>
</tr>
<tr>
<td>c. kl. Stz.</td>
<td>concentrische kernlose Stützzellen.</td>
</tr>
<tr>
<td>F. k.</td>
<td>Fusskegel der Neuroepithelien.</td>
</tr>
<tr>
<td>G.</td>
<td>Ganglienzenellen (resp. Ganglienzellenschicht).</td>
</tr>
<tr>
<td>inn. c. k. Stz.</td>
<td>innere concentrische kernhaltige Stützzellen.</td>
</tr>
<tr>
<td>inn. gr.</td>
<td>innere granulirte Schicht.</td>
</tr>
<tr>
<td>L. e.</td>
<td>Limitans externa.</td>
</tr>
<tr>
<td>m. c. k. Stz.</td>
<td>mittlere concentrische kernhaltige Stützzellen.</td>
</tr>
<tr>
<td>M. l.</td>
<td>Margo limitans.</td>
</tr>
<tr>
<td>N. E. sch.</td>
<td>Neuroepithelschicht.</td>
</tr>
<tr>
<td>O.</td>
<td>Opticusfasern (resp. Schicht derselben).</td>
</tr>
<tr>
<td>P. c. r.</td>
<td>Pars ciliaris retinae.</td>
</tr>
<tr>
<td>r. Stz.</td>
<td>radiale Stützzellen.</td>
</tr>
<tr>
<td>Sp.</td>
<td>Spongioblasten.</td>
</tr>
<tr>
<td>St.</td>
<td>Stäbchen.</td>
</tr>
<tr>
<td>Z.</td>
<td>Zapfen.</td>
</tr>
</tbody>
</table>

Sämtliche Zeichnungen sind von mir selbst mit Winkel'schen Objectiven und dem Winkel'schen Zeichenprisma entworfen.

Tafel XXII.

Accipenser sturio. Stör (etwa 1,40 m lang).

Fig. 1. a) innere concentrische kernhaltige Zelle. b) mittl. concentr. kernhalt. Zelle. Methylmixture. Schüttelpräp. Verg. 240.

Fig. 2. Innere concentr. kernhalt. Zellen anastomosirend. Methylmixture. Schüttelpräp. Verg. 178. α = von abgerissenen Nebenzellen herrührende Aeste.

Fig. 3. a. b. Concentr. kernlose Zellen. Methylmixture. Schüttelpräp. Vergr. 240.

Fig. 4. a. b. c. d. Radiale Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240. Abramis brama. Brachsen (775 gr schwer).

Fig. 5. a) Innere concentr. kernhalt. Zelle. b) Mittlere concentr. kernhalt. Zelle. Methylmixture. Schüttelpräp. Vergr. 240.

Fig. 6. Innere concentr. kernhalt. Zellen anastomosirend. Methylmixture. Schüttelpräp. Vergr. 240.

¹) Der grösste Theil der Abbildungen ist ursprünglich in doppelter Grösse wie hier angegeben gezeichnet und ist bei Eintragung in die Tafeln verkleinert worden. Etwaige trotz der Durchsicht im Text der Arbeit gebliebene Irrthümer sind hierauf zurückzuführen.

Fig. 8. Zwei concentr. kernlose Zellen. Methylmixture. Schüttelpräp. Vergr. 240.

Fig. 9. Radiale Stützzelle. Methylmixture. Schüttelpräp. Vergr. 240.

Fig. 10. Flächenansicht eines Stückes der concentr. kernlosen Zellen, von innen gesehen. Methylmixture. Schüttelpräp. Vergr. 178.

Fig. 11. Pleuronectes platessa. Maischolle (gross).

Fig. 12. Esox lucius. Hecht (6 kg schwer).

Fig. 13. Rana esculenta.

Fig. 14. Triton cristatus.

Fig. 16. Concentr. kernlose Zelle. Methylmixture. Schüttelpräp. Vergr. 240.

Fig. 17. Innere Enden zweier radialer Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.
Chelonia Midas.
Fig. 27. Kernlose concentr. Stützzelle. Osmiumsäure. Zerzupfungspräp. Vergr. 240.
Lacerta vivipara.
Fig. 28. Kernhaltige concentr. Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.
Fig. 29. Kernlose concentr. Stützzelle. Methylmixture. Schüttelpräp. Vergr. 240.
Fig. 30. a. b. c. d. Radiale Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.
Gallus domesticus.
Fig. 31. Kernhaltige concentr. Stützzellen. a) Von der Fläche, b) von der Seite, an der äusseren granulirten Schicht anliegend. Methylmixture. Schüttelpräp. Vergr. 240.
Fig. 32. Kernlose concentrische Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.
Fig. 33. Radiale Stützelle, das innere Ende unvollständig. Methylmixture. Schüttelpräp. Vergr. 240.
Corvus cornix.
Fig. 34. a. b. Kernlose concentr. Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.
Fig. 35. Radiale Stützzelle. Methylmixture. Schüttelpräp. Vergr. 240.
Anas domestic.
Fig. 36. Radiale Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.
Fig. 36. a. Kernhaltige concentr. Stützzelle an der äusseren granulirten Schicht anliegend. Methylmixture. Schüttelpräp. Vergr. 240.
Fig. 36. B. a. b. c. Drei kernlose concentr. Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.
Kätzchen, 1 Tag alt.
Kätzchen, 4 Tage alt.
Fig. 38. Kernhaltige concentr. Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.
Kätzchen, 7 Tage alt.
Kätzchen, 13 Tage alt.
Kätzchen, 21 Tage alt.
Fig. 41. Kernhaltige concentrische Stützzelle. Methylmixture. Schüttelpräp. Vergr. 240.
Studien zur vergleichenden Histologie der Retina.

Tafel XXIII.

Kater, alt.

Fig. 42. Kernhaltige concentrische Stützzelle. Methylmixture. Schüttelpräp. Vergr. 240.

Fig. 43. Kernhaltige konzent. Stützzellen. a) Von der Seite, b) von der Fläche. Methylmixture. Schüttelpräp. Vergr. 240.

Fig. 44. a. b. c. Kernlose concentr. Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.

Lepus cuniculus.

Fig. 45. a. b. c. d. Radiale Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.

Fig. 46. Flächenansicht von innen her von einem Stückchen der äusseren granulirten Schicht mit concentrischen Zellen. Methylmixture. Schüttelpräp. Vergr. 110.

Canis familiaris.

Fig. 47. a. b. Kernhaltige concentr. Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.

Fig. 49. a. b. Radiale Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.

Fig. 51. a. b. c. Kernhaltige concentr. Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.

Sus scrofa.

Fig. 52. a. b. Kernhaltige concentr. Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.

Fig. 54. Radiale Stützzelle. Methylmixture. Schüttelpräp. Vergr. 240.

Equus caballus.

Fig. 55. Kernhaltige concentr. Stützzelle. Methylmixture. Schüttelpräp. Vergr. 240.

Bos taurus.

Fig. 56. Mittelstücke von kernhaltigen concentr. Stützzellen. Methylmixture. Schüttelpräp. Vergr. 240.

Fig. 57. a. b. c. d. Radiale Stützzellen aus verschiedenen Partien der Retina. Methylmixture. Schüttelpräp. Vergr. 240.

Homo sapiens.

Fig. 58. Kernhaltige concentr. Stützzelle. Methylmixture. Schüttelpräp. Vergr. 240.

Cavia cobaya.

Fig. 59. Querschnitt der Retina. Stäbchen- und Zapfenschicht fortgelassen. Chromsäure. Celloidin. Vergr. 480.
Fig. 60. Die vier Schichten der concentrischen Zellen der Fläche nach von innen gesehen. Methylmixture. Schüttelpräp. Vergr. 480.

Fig. 61. Innere kernhalt. concentr. Stützzellen anastomosirend. Methylmixture. Schüttelpräp. Vergr. 480.

Fig. 62. Stückchen aus einem Schüttelpräp. Aeusserere concentr. kernhaltige Zelle. Methylmixture. Vergr. 480.

Fig. 63. Stückchen der Membr. hyaloidea mit den Abdrücken der inneren Enden der radialen Stützzellen. Methylmixture. Schüttelpräp. Vergr. 480.

Acanthias vulgaris.

Fig. 64. Theil eines Querschnitts der Retina. Alcohol. Celloidin. Vergr. 480.

Fig. 65. Radiale Stützzelle. Das äussere Ende nicht vollständig. Methylmixture. Schüttelpräp. Vergr. 480.

Fig. 66. Mittlere kernhaltige concentr. Stützzelle. Methylmixture. Schüttelpräp. Vergr. 480.

Mustelus vulgaris. Embryo. 215 mm lang.

Torpedo ocellata.

Fig. 68. Theil eines Querschnitts der Retina. Alcohol. Celloidin. Vergr. 480.

Fig. 69. Stückchen aus einem Zerzupfungspräparat. Alcohol. Vergr. 480.

Fig. 70. Mittlere kernhaltige concentr. Stützzelle. An der einen Seite sitzt noch ein Stück einer anderen Zelle an. Flächenbild. Alcohol. Schüttelpräp. Vergr. 480.

Fig. 71. Mittlere kernhaltige concentr. Zelle, Seitenansicht. Alcohol. Schüttelpräp. Vergr. 480.

Fig. 72. Innere concentr. kernhaltige Zelle, Flächenbild. An der einen Seite sitzt noch ein Stück einer Nachbarzelle an. Alcohol. Schüttelpräp. Vergr. 480.

Fig. 73. Flächenansicht mehrerer anastomosirender innerer concentrischer kernhaltiger Stützzellen mit Theilen von Fasern, die auf ihnen liegen. Alcohol. Schüttelpräp. Vergr. 480.

Tafel XXIV.

Accipenser sturio.

Fig. 74. Theile von Querschnitten der Retina. Müll. Fl. Vergr. 480.

Fig. 75. Theile von Querschnitten der Retina. Müll. Fl. Vergr. 480.

Protopterus annectens.

Fig. 76. Theil eines Querschnitts der Retina. Alcohol. Celloidin. Vergr. 480.

Fig. 77. Stückchen aus einem Schüttelprüparat: kernhaltige concentr. Stützzelle von der Seite. Alcohol. Vergr. 480.

Fig. 78. Stückchen aus einem Zerzupfungsprüparat. Alcohol. Vergr. 480.

Ceratodus Forsteri.

Fig. 79. Theil eines Querschnitts der Retina. Alcohol. Celloidin. Vergr. 480.
Studien zur vergleichenden Histologie der Retina.

Fig. 80. Stückchen der Retina aus einem Zerzupfungspräparat. Alcohol. Vergr. 480.

Rana esculenta.

Fig. 81. Theil eines Querschnitts der Retina. Holzessig. Celloidin. Vergr. 355.

Fig. 82. Stückchen der Retina aus einem Schüttelpräparat. Methylmixtur. Vergr. 480.

Chelonia Midas.

Fig. 83. Stück eines leicht schrägen Retinaquerschnitts. Osmiumsäure. Vergr. 355.

Emys europaea.

Fig. 84. Stück eines Retinaquerschnitts. Osmiumsäure. Celloidin. Vergr. 480.

Fig. 85. Stückchen der Retina aus einem Zerzupfungspräparat. Müller'sche Flüssigkeit. Vergr. 480.

Corvus cornix.

Fig. 86. Stückchen der Retina aus einem Schüttelpräparat. Methylmixtur. Vergr. 480.

Anas domesticus.

Fig. 87. Stückchen der Retina aus einem Schüttelpräparat. Methylmixtur. Vergr. 480.

Esox lucius (*1 1/2 Kilo*).

Fig. 88. Theil eines Querschnitts der Retina nach der Mitte zu, im wesentlichen die Schichten der concentrischen Zellen und die innere Körnerschicht umfassend. Chons. 1:600. Celloidin. Vergr. 355.

Fig. 89. Querschnitt durch die Randpartie der Retina, Ora serrata, Anfang der Pars ciliaris. Chons. 1:600. Celloidin. Vergr. 355.

Fig. 90. Innerer Theil einer radialen Stützzelle. Methylmixtur. Schüttelpräp. Vergr. 240.

Fig. 91. Äussere kernhaltige concentrische Zellen, anastomosirend. Methylmixtur. Schüttelpräp. Vergr. 480.

Fig. 92. Innere kernhaltige concentrische Zellen, anastomosirend. Methylmixtur. Schüttelpräp. Vergr. 240.

Fig. 93. Mittlere kernhaltige concentrische Zellen, anastomosirend. Methylmixtur. Schüttelpräp. Vergr. 240.

Die drei Figg. 91, 92, 93 sind einfach Umrisszeichnungen.

Chelonia Midas.

Lepus cuniculus.

Fig. 95. Theil eines Retinaquerschnitts, seitlicher Theil. Es fehlt die Stäbchen- und Zapfenschicht. Goldchlorid. Von Herrn Dr. Nordenson. Vergr. 300.

Canis familiaris.

Fig. 96. Stückchen der Retina aus einem Schüttelpräparat. Methylmixtur. Vergr. 300.
Dr. H. Stilling und Dr. W. Pfizner:

Equus caballus.

Fig. 97. Theil eines Querschnitts der Retina. Von Herrn Dr. Nordenson. Vergr. 355.

Homo.

Fig. 98. Theil eines Schrägschnittes der Retina. Müller'sche Flüssigkeit. Alaunecarmin. Von Herrn Dr. Nordenson. Vergr. 480.

Canis familiaris.

Über die Regeneration der glatten Muskeln.

Von

Dr. H. Stilling und Dr. W. Pfizner,

Privatdocenten in Strassburg.

Hierzu Tafel XXV.

Ob dem organischen Muskelgewebe das Vermögen der Regeneration zukommt, ob die neugebildeten Muskelfasern aus den alten Elementen hervorsprossen oder ob sie durch Umwandlung von Bindegewebszellen entstehen, das sind Fragen, welche zur Stunde eine endgültige Lösung noch nicht gefunden haben.

niehlich leicht und vollständig von dem Kern der alten Fasern aus, ohne dass sich die kontraktille Substanz an dem Aufbau der neuen Zellen beteiligte.

Diese Angaben forderten um so mehr zu einer Prüfung auf, als Jakimowitsch die Erscheinungen der Regeneration auch bei dem gefleckten Salamander und dem Frosch beobachtet zu haben angibt, die erfahrungsgemäss verloren gegangenem Theile ihres Organismus nur äusserst unvollkommen oder gar nicht wieder zu erzeugen im Stande sind.

Eine längere Reihe von Versuchen hat uns gelehrt, dass eine Regeneration ausgeschnitten der Stücken der Muskeln des Magens bei diesen Thieren kaum jemals zu Stande kommen dürfte.

Salamander vertragen überhaupt jeden operativen Eingriff äusserst schlecht 1), bei den Ueberlebenden bildete sich an der Operationsstelle eine bindegewebige Narbe, die ihren Charakter auch während eines längerer Zeitraums nach der Operation nicht mehr veränderte. Ebenso haben wir bei Fröschen die künstlichen Defecte in der Magenmuskulatur stets nur durch Bindegewebe ersetzt gefunden; von einer Umwandlung desselben in Muskelsubstanz konnten wir uns in keinem Falle überzeugen.

Wir beschränkten deshalb unsere Untersuchungen auf den wegen seiner ausserordentlichen Reproduktionsfähigkeit wohl bekannten gemeinen Wassersalamander (Triton taeniatus).

Die kleine Operation wird am zweckmässigsten in folgender Weise vorgenommen.

Ein Gehülfe fixirt das Thier so in der Rückenlage, dass er mit einer Hand Kopf und Vorderfüsse, mit der anderen die Hinterfüsse und den Schwanz festhält. Der OPERateur macht alsdann

in der linken Seite des Bauches einen Schnitt bis auf das Peritoneum; es ist wichtig, in der Serosa selbst nur eine möglichst kleine Öffnung anzulegen, damit die widerspännigen Thiere nicht so leicht im Stande sind, die Eingeweide aus der Wunde hervorzupressen.

In das kleine Loch wird ein Schielhäckchen eingeführt und nun der Magen behutsam vorgezogen. Man wählt alsdann den Ort, an welchem der Defect am passendsten angebracht werden kann und entfernt mit Pinzette und Scheere ein kleines Stückchen der Muskulatur.

Es ist für die spätere Untersuchung äusserst wichtig, dass man nur die Muscularis fortnimmt, dass also neben der Schleimhaut auch die Submucosa erhalten bleibt. Bei einiger Uebung und mit Benutzung der feinsten Instrumente ist diese Forderung leicht zu erfüllen.

Nach der Entfernung des Muskelstückchens — wir haben meist ein annähernd quadratisches Läppchen von 4—5 Mm. Durchmesser ausgeschnitten — wird der Magen in die Bauchhöhle zurückgeschoben und die Hautwunde durch eine Naht geschlossen.

Operirt man rasch und mit reinen Instrumenten, vermeidet man jede Verletzung der Schleimhaut, so hat der Eingriff nicht die mindeste üble Folge. Kurz nach demselben tummeln sich die Thiere in dem Bassin umher, als wenn ihnen Nichts geschehen wäre.

Einer sehr sorgfältigen Pflege bedürfen sie fernerhin kaum; es genügt, wenn man sie täglich einmal mit frischem Wasser versieht. 8—10 Tage nach der Operation wird ihnen das gewöhnliche Futter (Würmer) gereicht, welches sie ohne jeden Schaden verdauen.

Wir verfahren demnach wie folgt:
Das decapitirte Thier wird auf einer Korkplatte fixirt und der Bauch durch einen Längsschnitt rasch eröffnet; alsdann legt man eine Schlinge um den Darm dicht unterhalb des Magens, befestigt in dem Oesophagus eine Canäle und spritzt durch dieselbe langsam und vorsichtig die conservirende Flüssigkeit in den Magen. Der Inhalt einer Pravaz'schen Spritze ist für die meisten Fälle genügend.

Während sich nun die Magenhäute allmählich anspannen, tritt das Operationsfeld, resp. die Narbe klar zu Tage; erscheint der Magen hinlänglich ausgedehnt, so wird die Injection unterbrochen, der Oesophagus untern bunden und nunmehr das gefüllte Organ rasch herausgeschnitten und in der Conserverungslüssigkeit — als die geeignete, namentlich auch für die noch weiterhin nöthig werdenden Manipulationen erwies sich eine 0,25%/ige Chromsäurelösung — aufgehängt.

Nach 3—4 Stunden sind die Theile soweit fixirt, dass man das zur Untersuchung bestimmte Stück herauszuscheiden und beginnen kann, unter der Flüssigkeit die Schleimhaut von der Submucosa und Muscularis zu entfernen. Dies gelingt gewöhnlich sehr leicht und man hat nun ein dünn, zu der mikroskopischen Untersuchung mit den stärksten Vergrösserungen noch geeignetes Fragment, welches den durch die Operation gesetzten Defect in der Muscularis nebst den angrenzenden normalen Theilen enthält. Es wird noch für 1—2 Tage in der Chromsäurelösung gelassen, dann sorgfältig ausgewaschen und in Alcohol nachgehärtet.

Will man es nun untersuchen, so wird es in (mehrfach zu wechselndes) destillirtes Wasser gebracht und nach 6—24 Stunden in Safraninlösung(B) (1 : 100 Alcohol absol. + 200 Aq. dest.) übertragen; nach weiteren 24 Stunden wird es in absolutem Alkohol entwässert, wodurch es schon die Hauptmasse des überflüssigen Farbstoffs verliert, und dann in mehrfach erneuertem Nelkenöl von dem überschüssigen Farbstoff vollends befreit(2), was bisweilen mehrere Tage in Anspruch nimmt. Man muss das Präparat von Zeit zu Zeit unter das Mikroskop bringen, um den richtigen Zeitpunkt nicht zu versäumen.

Dann wird das Nelkenöl durch XyloI verdrängt und in XyloI-Canada balsam eingebettet; vor dem definitiven Einschluss ist es rühlig, das Präparat einmal in Nelkenöl zu betrachten, damit man je nach Wunsch

1) Andere Färhemittel (die verschiedenen Anilinfarbstoffe, Alauncarmin etc.) erwiesen sich als weniger brauchbar. Ueber Hämatoxylin s. weiter unten.

2) Wenn man wie üblich den überschüssigen Farbstoff gleich durch den Alkohol vollständig auszuschleudern versucht, erhält man bei diesen wie bei ähnlichen etwas massigen Präparaten, z. B. Kiemenplatten der Salamanderlarven, weit ungünstigere Resultate, indem an dünneren Stellen schon die Kerne farblos werden, während die dickeren noch diffuse Färbung zeigen.
die peritoneale oder die der Submucosa entsprechende Fläche nach oben kehren kann.

Die so hergerichteten Stücke wurden nun untersucht und die uns hauptsächlich interessirenden Einzelheiten abgezeichnet, wobei für die feineren Structuren natürlich homogene Immersionen angewandt wurden, unter diesen hauptsächlich Seibert XII (1/15") wegen ihrer grossen Focaldistanz bei gleicher optischer Leistung. Späterhin arbeiteten wir die meisten Präparate noch einmal um: sie wurden in einem mit Xylol gefüllten Gefäss aus dem Balsam gelöst, mit Alcoh. absol., dann mit Wasser behandelt, darauf mit Delafield'schem Hämatoxylin gefärbt und schliesslich wieder in der oben angeführten Weise eingeschlossen. Diese doppelte Behandlung ein und desselben Präparates hat grosse Vortheile. Die Safraninfärbung allein gestattet das Verhalten der Nucleolen, der Kerne der Leucocyten und überhaupt der degenerirenden Kerne zu untersuchen; die Hämatoxylinintection, die jetzt eine scharfe Kernfärbung gibt, während sie beim frisch gehärteten Präparat nicht gelingt, lässt die Kerne überhaupt, und namentlich die Kerntheilungsfiguren viel schärfer hervortreten als die Safraninfärbung. Sie erleichtert also namentlich das Auffinden von Theilungstfiguren, während sie für die Erkennung der feineren Einzelheiten des Theilungsvorgangs weniger leistet als die erstgenannte.

Bevor wir zu der Schilderung der mikroskopischen Verhältnisse übergehen, sei mit wenigen Worten des Befundes gedacht, der im Verlaufe der Heilung des Defectes mit blossem Auge festgestellt werden kann.

Den Grund der Wunde bedeckt in den ersten Tagen ein kleines Blutgerinnsel, welches nach und nach verschwindet, während sich die Ränder durch Anbildung neuen Materiales glätten. Das junge Gewebe, welches den Defect erfüllt, hat ganz das Aussehen von Narbensubstanz: dasselbe wird bald von dem Endothel überzogen, aber der Anschein einer einfachen bindigewebigen Narbe in der Magenwand bleibt je nach der ursprünglichen Grösse des Defectes noch längere Zeit bestehen. Erst ganz allmählich, im Laufe von 6—8 Monaten ändert sich das Aussehen der Narbe; sie wird kleiner, indem die weisse Substanz durch ein Gewebe verdrängt wird, das sich von den Muskelhauten in Nichts mehr unterscheidet. Es wird schliesslich unmöglich, die Stelle des Defects zu erkennen. Dass eine wirkliche Regeneration der Muskeln erfolgt ist, beweist, dass sich alle Partien der Magenwand (also auch die Gegend, in welcher der Substanzerlust früher vorhanden war) gleichmässig und kräftig kontrahiren. So lange die Narbe lediglich aus Bindegewebe besteht, kann man oft deutlich sehen,
Ueber die Regeneration der glatten Muskeln. 401
dass die Kontraktionswellen an dem Orte des Defectes eine Unter-
brechung erleiden.

Die mikroskopische Untersuchung des Verlaufes dieser Vorgänge ergibt nun Folgendes:

Die Regeneration dieses Epithels erfolgt auf karyokinetischem Wege. Man sieht die bekannten Kernfiguren in der Umgebung des Defects und auf dem Defect selbst, sowie auch in weiterer Entfernung davon. Letzteres dürfte, da wir bei gesunden Thieren sowie nach dem gänzlichen Verschwinden des Defects nie Theilungsfiguren in diesem Gewebe beim erwachsenen Thier vorfanden, auf eine gelinde, durch den Eingriff veranlasste Peritonitis zurückzuführen sein. Leider ist dagegen in den ersten Tagen nach der Operation das Präparat zu wenig durchsichtig, um erkennen zu können, in welcher Weise der Defekt des Peritonealepitheles geschlossen wird; sobald er durchsichtiger geworden ist, ist eben die Lücke schon wieder ergänzt. Es ist wohl nicht anders anzunehmen, als dass die Epithelzellen sich vom Rande her über die Wunde hinüberschieben; die Häufigkeit der selbst noch späterhin wahrzunehmenden (karyokinetischen) Theilungsfiguren beweist eine viel energischere Vermehrung der Epithelzellen, als selbst erforderlich wäre, um den Defect schon am ersten Tage zu überhäuten. Wenn aber die einzelnen Elemente dieses Gewebes sich in so starker Weise vermehren, so ist es gewiss mehr als unnöthig, eine anderweitige Herkunft dieser neugebildeten Epithelzellen, etwa

1) Vgl. Pfitzner, Zur pathologischen Anatomie des Zellkerns, Virchow's Archiv, Bd. 103, S. 291 und Fig. 4—8 auf der beigegebenen Tafel.
aus umgewandelten Bindegewebszellen, als möglich anzunehmen. Eine Vermehrung durch Theilung ist immer wahrscheinlicher als eine durch Umwandlung, und wenn dazu erstere sicher und in ausreichender Häufigkeit nachgewiesen ist, für letztere aber keine Beobachtung spricht, so ist wohl erstere als bewiesen und letztere als ausgeschlossen anzusehen.

Um es hier gleich abzusagen, sieht man später, etwa nach 2 Monaten, Blutgefäss in bekannter Weise in die Narbe hineinsprossen; ihre Endigungen können mit nichts anderem verwechselt werden, da sie stets bis zu einer grösseren Capillare zu verfolgen sind.

Diese verschiedenen innerhalb des Bindegewebes liegenden Zellen zeigen nun innerhalb des Defects und in der nächsten Nach-

1) Vgl. die oben angeführte Abhandlung.
barsehaft namentlich in den ersten zwei Monaten nach der Operation zahlreiche karyokinetische Figuren. Wir müssen damit für unser Object wenigstens, eine isogenetische Regeneration des Bindegewebes als erwiesen ansehen. Was eine gleichzeitige allo-
genetische Regeneration anlangt, so kommt von den Geweben, die an der Stelle seiner Neubildung vorhanden sind, das Peritonial-
epithel wohl nicht weiter in Betracht. Ebensowenig auch die Blutgefäße, die als einfaches Endothelrohr in den Defect erst spät hineinwachsen und bis in die feinsten Ausläufer ihrer Sprossen stets scharf zu verfolgen sind. Es kommen also nur noch die Leu-
kocyten in Betracht. Zwischen diesen und den (sog. fixen) Bindegewebszellen finden sich jedoch nie die geringsten Uebergangs-
formen, vielmehr sind sie stets von ihnen scharf abzugrenzen, zeigen auch so ausgesprochene Degenerationserscheinungen in ihren Kernen, dass an eine Umbildung derselben in Bindegewebszellen nicht zu denken ist. Mithin bleibt die Theilung der bereits vorhandenen Bindegewebszellen als Modus für die Neubildung der Bindegewebszellen, und damit wohl auch des Bindegewebes, allein übrig.

Welche Rolle spielen denn aber die Leukocyten? Etwa die von Metschnikoffschen „Phagocyten“, also von Zellen, welche die Zerfallsprodukte des Blutgerinnsels und der in Folge des Ein-
griffs zu Grunde gehenden Zellen fortzuschaffen bestimmt sind? Aber dann müssten irgendwelche Erscheinungen wahrzunehmen sein, die auf ein beständiges Zu- und Fortwandern zu deuten wären. Das ist jedoch nicht der Fall, vielmehr gerade das Gegen-
theil. Wir finden nur am ersten Tage in dem Gerinnsel noch einzelne Leukocyten, deren Kern eine annähernd normale Structur, entsprechend dem sog. Ruhe stadium der Karyokinese besitzt; später zeigen sämtliche Kerne Degenerationserscheinungen und zwar desto weiter vorgeschrittene, je älter der Defect ist. Eine Erneue-
runng findet also nicht statt, vielmehr scheinen die einmal nach dem Ort der Verletzung ausgewanderten dort unthätig liegen zu bleiben und an Ort und Stelle allmählich zu Grunde zu gehen. Auch werden sie bald in eigenthümlicher Weise abgegrenzt; sie liegen zusammengeballt in der Mitte des Defects, während sich in den Partien um den Defectrand herum nur äusserst weinige vor-
finden. Wenn allmählich der Defect in der Muscularis durch Vor-
rücken der Muskelfasern verschwindet, drängen sich ihre Ueber-
bleibsel immer fester in der Mitte zusammen, um nach und nach ganz aufgelöst zu werden. Ueber den Rand des Muskeldiefs greift der Haufe nie heraus; wird dieser Defect zuletzt sehr klein, so sind sie auf eine verschwindende Menge reduirirt und nach vollkommener Wiederherstellung der Muskelhaut ist auch der letzte Rest der Leukocyten verschwunden.

An eine solche, gewissermaassen sanitätspolizeiliche, Function ist also wohl nicht zu denken. Dagegen liegt die Frage nahe, ob sie etwa, wie dies auch mehrfach angenommen ist, an derartige Stellen auswandern, um dort zu zerfallen und durch diesen Zerfall die Stoffe zu liefern, die zum Aufbau der neu zu schaffenden Gewebelemente erforderlich sind. Das wäre eine in mancher Beziehung sehr einleuchtende Annahme; es spricht indessen doch manches dagegen. Namentlich, dass sie sich verhältnissmässig sehr lange halten. Wenn die Ausfüllung des Defects durch Bindegewebe längst beendet ist, sind sie noch in anscheinend nicht beträchtlich verminderter Anzahl vorhanden, trotz der inzwischen weit vorgeschrittenen Degeneration ihrer inneren Strukturen. Will man annehmen, dass ihre letzten Zerfallsprodukte beim Aufbau der neu zu bildenden Muskelzellen Verwendung finden, so lässt es sich wiederum nicht erklären, weshalb nicht die unmittelbar den Defect umgrenzenden Muskelzellen, die doch den ersten Nutzen von dieser Nahrungsquelle hätten, sondern in der Regel die etwas entfernter liegenden die Vermehrung besorgen.

Ausserdem spricht ein anderes Experiment gegen diese supponirte Bestimmung der Leukocyten. Wenn man eine Wunde in einer hochgeschichteten Epidermis, z. B. Hundeschnauze, anlegt und eine Heilung derselben per primam verhindert, so wird diese Epithelwunde durch ein Gerinnsel ausgefüllt, in dem sich viele Leukocyten befinden, die stets in geringerer Anzahl in den weiteren Intercellularräumen der untersten Zellschichten vorhanden, nach Eröffnung derselben die Gelegenheit benutzen auszuwandern. Hier kommt deren Zerfall dem Organismus nicht zu gute; die an die Wunde angrenzenden Epithelzellen sterben auch allmälig ab, wobei ihre Intercellularräume verstreichen, sodass also nichts nach innen in das Innere dringen kann, und bilden eine Degenerationszone, unter der, an der Grenze zwischen Epidermis und Cutis, die Vermehrung und Neubildung der Epithelzellen vor sich geht.

Wir kommen also zu dem Resultat: Ebenso wie unter normalen Verhältnissen da, wo sich Gewebsspalten nach aussen öffnen (Tonsillen, Schleimhäute ohne Stratum corneum u. dgl.), wandern
Ueber die Regeneration der glatten Muskeln.

405
die überall in Gewebslücken herumkriechenden Leukocyten da aus, wo diese Spalträume durch künstliche Eingriffe eröffnet werden, und zwar so lange, bis die Ausgänge auf irgend welche Weise verschlossen werden. Einmal angewandert gehen sie morphologisch zu Grunde; ob und in welcher Weise ihre Zerfallsprodukte dem Gesammtorganismus wieder zu Gute kommen, muss dahingestellt bleiben.

Die Ausfüllung des Defects in der Muscularis lässt sich in ihren Hauptzügen verfolgen, auch ohne dass man bestimmte Vermehrungsserscheinungen (z. B. karyokinetische Kerntheilungstfiguren od. dgl.) als Wegweiser benutzt. Sobald die erste stürmische Periode, die auf den Eingriff folgt, vorüber ist, also etwa nach 10 bis 20 Tagen, und die Leukocyten mehr zusammengeballt und homogener geworden den Grund der Wunde erkennen lassen, sieht man den Defect als rundliche, von Bindegewebe ausgefüllte Stelle, umgrenzt von der Muskulatur, die einen ziemlich scharfen Rand zeigt (Fig. 1). Nach 2—3 Monaten verliert sich diese scharfe Begrenzung, die Muskelfasern dringen in unregelmässiger Anordnung in das Bindegewebe, welches den Defect ausfüllt, hinein, meistens mit dem einen Ende nach dem Centrum des Defects gerichtet. Ist der Defect der Muscularis fast vollständig verschwunden, so zeigt sich folgendes Bild: An einer Stelle, die nicht mehr annähernd kreisrund ist, sondern die Form einer sehr unregelmässig verzogenen Spalte hat, findet man noch einen Ueberrest von degenerirten Leukocyten, an ihren Kernrudimenten kennbar, aufgehaucht. Hier sieht man nicht die beiden Muskelschichten continuirlich verlaufen, sondern die einzelnen Fasern enden an dieser Spalte; nie läuft ein Muskelkern quer über sie hinweg. Ausserdem fällt etwas anderes auf. Während nämlich an gesunden Theilen des Magens die beiden Muskelfaserschichten eine höchst regelmässige Anordnung zeigen, genaue rechtwinklige Kreuzung von Faserzügen, die unter einander parallel verlaufen, beginnt die Faserrichtung in der Nähe des Defects eine sehr ungeordnete zu werden. Die letzten Spuren eines früher bestandenen Defectes kann man schliesslich noch an einer solchen unregelmässigen Anordnung erkennen, die sich erst sehr spät verliert, wenn jede Unterbrechung in der Faserrichtung der einzelnen Schichten schon längst verschwunden ist. Der schliessliche Ausgang ist die absolute Restitution des Status quo ante; bei einem Thier, das ein Jahr nach
der Operation getödtet war, konnten wir trotz der sorgsamsten Untersuchung des in mehrere Theile zerlegten ganzen mittleren Magenabschnitts, der der Sitz des ursprünglich recht grossen Defects gewesen war, keine Unterbrechung oder sonstige Störung in der Anordnung der Muskelfasern auffinden.

Fassen wir diese Beobachtungen zusammen, so kommen wir zu dem Ergebniss, dass hier wirklich eine Regeneration von Muskelfasern stattgefunden hat, denn bei dem geschilderten Verhalten der Muskelfasern ist die Annahme wohl gänzlich ausgeschlossen, dass lediglich eine Narbencontraction das Verschwinden des Defects bewirkt haben könnte. Also Muskelfasern sind neugebildet worden, um den bisweilen ziemlich beträchtlichen Defect zu decken, aber auf welche Weise?

Dass sie auf metaplastischem Wege aus Bindegewebsfasern resp. -zellen hervorgegangen seien, lässt sich hier schon mit ziemlicher Sicherheit ausschliessen. Denn bei dieser Annahme wäre wohl in erster Linie zu erwarten, dass diese Neubildung an der Stelle des Defects selbst stattfinden würde. Nun haben wir aber nie Muskelfasern mehr oder weniger isolirt mitten im Defect gefunden, vielmehr rücken sie stets in geschlossener Anordnung gegen die Mitte des Defects vor. Noch weniger können also die in der Mitte des Defects zusammengeballten degenerirten Leukocyten an der Neubildung beteiligt sein. Wenn also die Neubildung dort statthat, wo sich Bindegewebe und Muskelfasern finden, aber nie da, wo nur Bindegewebe vorhanden ist, obgleich hier die Bedingungen mindestens ebenso günstig sind; so ist doch wohl von vorne herein anzunehmen, dass die Neubildung vom Muskelgewebe selbst besorgt wird. Aber wir können diese Annahme auch direct beweisen. Nach dem mehrfach betonten Satze, dass bei gleicher Wahrscheinlichkeit der isogenen und der allogen Neubildung eines Gewebes die Annahme der ersteren die berechtigtere ist, dass aber, nachdem das Vorkommen einer isogenen Neubildung bewiesen ist, die Annahme einer gleichzeitigen alogenen zu verwerfen ist (wenigstens ist bis jetzt in der ganzen Gewebelehre kein einziges Analogon mit Sicherheit nachgewiesen), müssen wir behaupten, dass die glatten Muskelzellen sich ausschliesslich durch Theilung vermehren, nachdem es uns geglückt ist, specifische Theilungserscheinungen mit Sicherheit und in genügender Häufigkeit nachzuweisen. Wir ver-
mochten nämlich in der Umgebung der Defecte eine bedeutende Anzahl der bekannten karyokinetischen Figuren in Zellen aufzufinden, deren Character als organische Muskelfasern keinem Zweifel unterliegen konnte.

Bevor wir die einzelnen Vorgänge der Karyokinese der Muskelfasern besprechen, müssen wir mit wenigen Worten das Verhalten derselben im Ruhestadium schildern.

Die Präparate mussten, um überhaupt brauchbar zu sein, sehr stark aufgehellt werden, sodass die speziellen Strukturen des Zellleibes nicht näher untersucht werden konnten; sehr gut traten dagegen die hauptsächlichen Strukturen und Strukturveränderungen der Zellkerne hervor.

Der Kern ist im ausgebildeten Zustande sehr lang gestreckt (Fig. 2 a) und zeigt nach guter Färbung das bekannte Bild ruhender Zellkerne: ein unregelmässiges Chromatingerüst mit wechselnder Fadendicke und stärker ausgesprochener Wandschicht, sowie Nucleolen, die hier in grösserer Anzahl und z. Th. beträchtlicher Grösse vorhanden sind. Je stärker der Magen bei der Hartung ausgedehnt wurde, desto mehr sind nicht nur die Fasern selbst, sondern auch die Kerne verschmälert und in die Länge gezogen, und desto enger ist das Chromatinfadenswerk zusammengedrängt. Eine andere Verschmählerung des Kernes, die nicht hiermit verwechselt werden darf, beruht auf einer davon ganz verschiedenen Ursache. Man findet nämlich bei dem einen Thier sehr häufig, bei dem anderen nur spurweise in der Umgebung des Defectes
neben Fasern von normaler Breite solche, die mehr oder weniger stark verschmälert sind und deren Kern, entsprechend verschmälert, eine Verklumpung seines Fadenwerks zeigt; je schmaler die Faser und damit auch der Kern, desto plumper die Kernstruktur; bei den schmalsten erscheint der Kern fast homogen (Fig. 2 b—d).

Aus dem Ruhestadium geht nun der Kern in Kinese über, wobei im Grossen und Ganzen das Paradigma des Epithels der Salamanderlarve inne gehalten wird, so dass wir uns darauf beschränken können, auf die Abbildungen der beigegebenen Tafel und die Erklärungen zu derselben zu verweisen. Etwas modifizirt sind die dabei auftretenden Bilder in Folge der bedeutenden Ausdehnung des Kerns in die Länge, die derselbe auch in den verschiedenen Theilungsphasen nicht verläugnet. Daneben ist vielleicht noch darauf aufmerksam zu machen, dass hier wie bei allen Zellarten, die eine stärkere Nucleolenentwicklung zeigen, die Nucleolen noch relativ lange fortbestehen (vgl. Fig. 3).

Ob auch die eigentliche Zelltheilung nach demselben Schema verläuft, lässt sich dagegen nicht so leicht entscheiden. Die Schwierigkeit liegt hauptsächlich darin, dass die Zellcontouren sich so schwer auf längere Strecken mit Sicherheit verfolgen lassen, und dass häufig, wenn die Kernfiguren schon weiter auseinandergerückt sind, nur die eine deutlich wahrzunehmen ist, die andere aber von etwas Darüberliegendem verdeckt wird oder nicht mit Sicherheit als zugehörig constatirt werden kann. So gelang es nicht zu Fig. 14—16 den entsprechenden zweiten Kern aufzufinden, obgleich sie ja unbestreitbar Tochterkerne darstellen. In dem als Fig. 17 abgebildetenFalle waren indessen die Verhältnisse so

günstig, dass man die beginnende Einschnürung des Zelleibes zwischen den beiden Kernen deutlich wahrnehmen konnte. Auffallend ist, dass diese beiden Kerne schon sehr weitgehende Annäherung an das Ruhe stadium zeigen, wenn sie sich auch unzweifelhaft noch als Tochterkerne manifestieren: von Nucleolen ist noch nichts wahrzunehmen, und der „Knäuel“, der sich eben in die „Gerüstform“ umwandelt, lässt in seinem Fadenverlauf noch die Grundzüge der vorangegangenen Sternform erkennen. Anderseits fanden sich auch Fasern, die zwei Kerne einschlossen, ohne irgendwelche Einschnürung zu zeigen, obgleich die Kerne schon viel weiter als im vorigen Fall ausgebildet waren (Fig. 18). Hier dürfte es sich sicher um eine Kerntheilung ohne nachfolgende Zelltheilung, also um Bildung zweikerniger Zellen handeln, was ja als halbpathologischer Vorgang, als eine Art Hemmungsbildung bei anderen Zellarten längst bekannt ist. In einem anderen Falle (Fig. 19) lagen zwei Kerne, denen nur noch wenig an der vollkommenen Ausbildung fehlt, dicht nebeneinander.

Wir müssen darnach annehmen, dass die Kerntheilung bisweilen zur Bildung zweikerniger Zellen führt, dass aber als Regel auf die Kerntheilung die Zelltheilung folgt, und zwar in der Weise, dass die Tochterkerne unter fortschreitendem Uebergang in das Ruhe stadium sich immer weiter von einander entfernen, und dass zwischen ihnen die Muskel faser immer dünner ausgezogen wird, bis sie schliesslich zerreisst. Damit wäre aber auch die fehlende Uebereinstimmung hergestellt; denn wo die Zelle in der Richtung der Theilungsaxe so auserordentlich stark entwickelt ist, kann die Theilung natürlich nur sehr allmählich vorschreiten, während sie bei Zellen, die in der Richtung der Theilungsaxe sehr kurz sind, die Theilung als scharf einschneidende Einkerbung auftreten muss.

Was die Zahl der karyokinetischen Figuren anlangt, so ist sie allerdings recht gering, entsprechend der sehr langsamen Ausfüllung des Defects; indessen wird man von etwa dem achten

1) Zweikernige Zellen mit vollkommen ausgebildeten Kernen haben wir dagegen zufälligerweise niemals mit Sicherheit constatiren können, wenn wir auch häufig genug entsprechende Bilder zu sehen glaubten; es war aber nie der Verdacht der Täuschung über ihre Zugehörigkeit zu einer und derselben Faser auszuschliessen.
Tage an selten in einem Präparat sie gänzlich vermissen — gute Färbung vorausgesetzt. Nach dem gänzlichen Verschwinden des Defects, sowie an Stellen, die in grösserer Entfernung vom Defect liegen, fanden wir nie eine Theilungsfigur.

Wir haben oben gesagt, dass die Karyokinese hier genau dieselben Stadien zeigt, wie bei dem Epithel der Salamanderlarve (s. Abbildungen). Ausser den Formen des Ruhestadiums und der karyokinetischen Theilung sowie den Formen der Degeneration haben wir keine gefunden, die eine specielle Deutung gestatteten, namentlich nicht solche, die auf eine sog. „directe“ Kerntheilung gedeutet werden könnten; denn Kerne wie Fig. 19 können selbstverständlich auf karyokinetischem Wege entstehen. Da nun die „indirecte“ Theilung in hinlänglicher Häufigkeit gefunden wird, können wir das Vorkommen „direceter Kerntheilung“ für dieses Object nicht als bloß unerwiesen, sondern geradezu als widerlegt betrachten.

Fassen wir das Gesagte kurz zusammen, so hat die Untersuchungsreihe folgende Ergebnisse geliefert:

1. Bei Triton taeniatus ist die organische Muskulatur im Stande sich zu regeneriren.
2. Diese Regeneration wird dadurch bewirkt, dass eine Vermehrung der vorhandenen Muskelfasern durch Theilung stattfindet.

Es bleibt uns nun noch die unangenehme Aufgabe übrig, an der Hand dieser Untersuchungsergebnisse die oben erwähnte Arbeit von Jakimowitsch zu kritisiren. Unangenehm aus zwei fachem Grunde: erstens weil wir sie nur aus einer vorläufigen Mittheilung und aus einem, wenn auch ausführlichen und sorgfältigen Referate kennen; und dann weil wir die einzelnen Angaben als wenig zuverlässig, die Resultate der Untersuchungen als unrichtig bezeichnen müssen.

Wenn J. Salamandra als besonders günstiges Versuchsoject bezeichnet, so verweisen wir auf das am Eingang Gesagte. — Von den Reagentien, die J. benutzte, ist Ammonium bichromieum
lieber die Regeneration der glatten Muskeln.

411

Nach diesem dürfte es wenig verwundern, wenn J. seltsame Resultate erhalten hat. So, dass derselbe bei der Regeneration keine karyokinetischen Figuren aufzufinden vermochte, und was derselbe über die bei der Theilung des Kerns auftretenden Er scheinungen sagt. Wenn der Nucleolus im ruhenden Kern oft fehlt, dagegen das Auftreten zahlreicher (2—4) Nucleolen als Zeichen beginnender Theilung anzusehen ist, so müssen sich ja im Magen erwachsener Tritonen fast alle Muskelfasern zur Thei lung anschicken. Dann folgt als nächstes Stadium ganz richtig eine Knäuelform; aber dieser Knäuel reisst ohne weiteres mitten durch, und J. bezeichnet ausdrücklich diese Theilungsart als die „directe“ im Gegensatz zur „indirekten“ „Flemming“- schen Sinne“. Auf welchem Wege schliesslich J. die Thatsachen eruirat hat, die er über das Verhalten des Zellprotoplasmas und der contractilen Substanz angiebt, vermögen wir nicht zu ergründen — wohl auf demselben, auf dem er die Zuhilung grösserer Defekte in der Magenmusculatur von Frosch und Salamandra zu constatiren wusste. Wir wenigstens mussten uns überzeugen, dass bei diesen Präparaten weder das Isolationsverfahren noch eine Zerlegung in Schnitte Aussicht bot auf ein tieferes Eindringen in die feineren Verhältnisse, und bei den unversehrten Präparaten war es uns unmöglich, mit den uns zu Gebote stehenden Hülfsmitteln und Untersuchungsmethoden weiteres zu erreichen, als oben angegeben ist.

Erklärung der Abbildungen auf Tafel XXV.

Fig. 1. Hälfte eines Defects. 8 Wochen nach der Operation. Der Defect ist mit Bindegewebe ausgefüllt, in das ein Capillargefäss hineingesprosst ist. Um den Defect herum Muskelfasern mit stäbchenformigen Kernen und langgestreckten Kernfiguren. Große Kernfiguren des Peritonealepithels, kleine des Bindegewebes.

Fig. 2. Kerne glatter Muskelfasern im Ruhestadium. a. Normaler Kern. b—d. Degenerationserscheinungen.

Fig. 3. Beginn der Kinese. Knäulform. Zwei größere Nucleolen sind noch sichtbar.

Fig. 4. Lockerer Knäul.

Fig. 5. Segmentirter Knäul.

Fig. 6. Umlagerung der Segmente des Knäuls zum Stern.

Fig. 7. Stern, vor der Längsspaltung.

Fig. 8. Stern. Längsspaltung der Kernfäden.

(Bei Fig. 7 und 8 ist die Körnelung der Chromatinfäden sehr deutlich).

Fig. 9 und 10. Feinstrahliger Stern.

Fig. 11. Metakinese.

Fig. 12. Tochtersterne.

Fig. 13. Auseinanderrücken der Tochtersterne. Zwischen beiden sind feine achromatische Fäden ausgespannt.

Fig. 14. Tochterknäulform.

Fig. 15 und 16. Dasselbe, in die Gerüstform übergehend.

Fig. 17. Einschnürung der Muskelfaser zwischen zwei Tochterkernen. Letztere zeigen Übergang von Knäulform in Gerüstform.

Fig. 18 und 19. Weiterer Übergang in das Ruhe Stadium, das in Fig. 19 fast erreicht ist. Auftreten von Nucleolen. (In beiden Fällen ist die Theilung des Zellleibes ausgeblieben.)
Bemerkungen über Secretion und Bau von Schleimdrüsen.

Von

Dr. Ed. Paulsen in Kiel.

mige Einsenkungen, deren Seitenwände mit einer Schicht, den Zellen der Epidermis ähnlicher, niedriger und breiter, deren Grund aber mit einer Reihe hoher und gestreckter Zellen ausgekleidet ist. Während von den ersteren bei obiger Behandlung nur die grossen, rundlichen Kerne tingirt werden, erweisen sich die letzteren durch die Färbung des Maschenwerks und, des an der Basis befindlichen, abgeplatteten Kerns als Schleimzellen, deren netziger Inhalt an vielen Stellen durch das obere offene Ende antritt und die Lichtung der beutelförmigen Einstülpung der Cutis erfüllt.

Zur Kenntniss des Blasenepithels einiger Schildkröten (Testudo graeca und Emys europaea).

Von

Dr. Joseph Heinrich List.

Hierzu Tafel XXVI.

I. Das Blasenepithel von Testudo graeca. (Taf. XXVI, Fig. 1 bis 3.)

Betrachtet man das Blasenepithel frisch ohne jede Zusatzflüssigkeit oder in Humor aquaeus in der Flächenansicht, so sieht man die polygonalen Felder, welche den einzelnen Zellen der obersten Lage entsprechen, und die so ziemlich sämtlich gleiche Größe zeigen. Zwischen den grösseren polygonalen Feldern bemerkt man aber häufig kleinere, welche nach Einwirkung von salpetersaurem Silberoxyd als dunklere Stellen im Epithele erscheinen (man vergl. Fig. 1). Nach Behandlung mit letzterem Reagens (1 : 300) oder mit Osmiumsaure (0,5—1 perc.) treten die Zellgrenzen deutlich hervor. An Profilansichten, die sich in jedem Präparate ergeben, bemerkt man, dass sich die Zellen der obersten, d. i. dem Cavum zugekehrten Lage gegen dasselbe etwas vorwölben.

Betrachtet man das Epithel an Querschnitten oder an Isolationspräparaten, so ergiebt sich dasselbe als ein geschichtetes Cylinderepithel, dessen oberste Zellenlage grosse Ähnlichkeit mit den Magenepithelzellen verschiedener Amphibien und Reptilien zeigt (Fig. 2, Fig. 3 a—g).

An Isolationspräparaten aus Müller’scher Flüssigkeit erscheint nun der grösste Theil der Zellen der obersten Lage zu becherförmigen Gebilden umgewandelt. Der obere überhalb des Kernes gelegene Theil der Zelle ist häufig etwas ausgebaucht, während der untere Theil entweder cylindrisch oder häufiger sich nach unten allmählich verjüngend konisch erscheint. Die einzelnen Zellen erinnern so mit ihren becherähnlichen Formen in der Profil-
ansicht lebhaft an Becherzellen, ohne je die exquisite rundliche Theca und die abgeplatteten Kerne derselben zu zeigen.

Der oberhalb des Kerns gelegene Theil der Zelle erscheint an Isolationspräparaten aus Müller'scher Flüssigkeit oder Osmiumsäure hell, und ein Theil der Zellsubstanz ist daselbst in Form eines Gerüstwerkes angeordnet, während der übrige größte Theil des oberen Zelltheiles homogenes Aussehen zeigt. An diesem oberen Zelltheile kann man ferner eine deutliche Membran nachweisen, welche sowohl an Isolationspräparaten als auch an Flächenansichten nach Behandlung mit salpetersaurem Silberoxyd (man vergl. Fig. 1) distinct hervortritt. An dem obersten Theile der Zelle gelingt es ferner, ein deutliches Stoma zu beobachten, aus welchem man sehr häufig einen halbkugelförmigen Pfropf hervorragt (Fig. 3 c, d). Auch an ganz frischen Objecten kann man diese Vorwölbung beobachten, ohne aber wegen der gleichem Lichtbrechungsverhältnisse ein Stoma bemerken zu können.

Die Zellen der obersten Lage würden demnach oben offen erscheinen, ein Verhalten, welches einen Vergleich mit den Epithelzellen des Magens der verschiedensten Wirbelthiere vollkommen zulässt. In dieser Ansicht wurde ich noch bestärkt an Schnitten von Blasen, welche sofort nach Tödtung des Thieres in absolutem Alkohol gehärtet wurden. An feinen Schnitten (Fig. 2) gelang es mir nicht, an dem obersten Zelltheile eine deutliche abschliessende Membran zu unterscheiden, sondern es schien sich der Zellinhalt etwas vorzuwölben, um die Zelle daselbst abzugrenzen1). Der untere Theil der Zellen erscheint an Isolationspräparaten dunkler und zeigt ein granulirtes Aussehen. Fast stets kann man bemerken, dass sich dieser untere Zellentheil mit einer halbkugelförmigen Ausbauchung gegen den oberen hellen abgrenzt (Fig. 3 a, c). Der Nuclens liegt in der Regel in dem unteren dunkleren Theile; hier und da kann man auch Zellen beobachten, in welchen ein Unterschied zwischen dem oberen und unteren Zelltheile nicht bemerkt werden kann, sondern in welchen die gesammte Zellsubstanz hell erscheint, und man nur noch undeutliche Spuren eines Gerüstwerkes sehen kann (Fig. 3 g).

Manchmal konnte ich Zellformen bemerken, deren oberer

1) Ich muss übrigens bemerken, dass meine Präparate sämtlich von im Winterschlafe befindlichen Individuen stammten.

Archiv f. mikrosk. Anatomie Bd. 28.
Theil der Membran nach aussen umgeschlagen war (Fig. 3 d), während der untere Theil schwanzartig erschien.

Was den Kern der Zellen der obersten Lage betrifft, so erscheint derselbe wohl am häufigsten ellipsoidähnlich und zwar so gelagert, dass seine Längsaxe mit derjenigen der Zellen zusammenfällt. Allerdings zeigt derselbe häufig an der dem oberen hellen Zelltheile zugekehrten Seite eine Ausbuchtung. An Isolationspräparaten aus Müller'scher Flüssigkeit zeigten die Nuclei das bekannte Verhalten, indem das Gerüstwerk von der Membran getrennt als dichte Granulation erschien. An denjenigen Stellen der Zelle, an welchen der Nucleus lag, konnte man mitunter Ausbuchtungen der Zelle selbst beobachten (Fig. 3 c).

Ausser den für die obere Lage besprochenen charakteristischen Zellformen kann man aber auch Zellen finden, welche ganz den Habitus gewöhnlicher Epithelzellen besitzen, und welche, wie man sich an Isolationspräparaten überzeugen kann, zwischen den besprochenen Zellen eingeklebt sind (Stz, Fig. 3 a, b). Ich möchte diese Zellen mit dem Namen Stützzellen bezeichnen, weil sie gewissermaassen in bestimmten Abständen wie Pfeiler erscheinen, um welche sich die becherähnlichen Zellformen gruppiren. Diese Stützzellen (Fig. 3 e, f) haben mehr prismatische Formen, sind oft sehr dünn und reichen mit ihrem unteren schwanzartigen Fortsatz sehr häufig bis zur Bindegewebslage. Sie stehen gewöhnlich einzeln, hie und da allerdings auch zu mehreren beisammen und zeigen an dem den Kern führenden Theile wohl stets eine Anschwellung. Die Zellsubstanz erscheint an Isolationspräparaten fein granulirt, während der Kern, welcher in der Regel im mittleren Theile der Zelle zu liegen kommt, gewöhnlich ellipsoidähnliche Form zeigt. Die längsten dieser Stützzellen, die ich beobachten konnte, hatten eine Länge von 129 μ 1).

Die Zellen der unteren, der Mucosa aufsitzenden Lage, die häufig dadurch, dass die Zellen der oberen bis zur Bindegewebslage reichen, nicht deutlich differenzirt erscheint, sind gewöhnlich cylindrisch oder mehr keulenförmig (Fig. 3 a, b, c). Allerdings gelingt es auch, wenn auch seltener, Zellenformen zu beobachten, welche Pyramidenform besitzen und mit breiter Basis

1) An versilberten und sodann isolirten Epithelien kann man bemerken, dass der an der Oberfläche liegende Theil der Stützzellen häufig das Silberoxyd stärker reducirte, und dass davon die dunklen Felder herrühren (Fig 1).
der Mucosa aufsitzen (Fig. 3 b). Der Kern dieser Zellen erscheint ellipsoidähnlich oder mehr sphärisch.

An frischen Präparaten erscheint die Zellsubstanz sämtlicher Zellen trübkörnig. An grösseren zusammenhängenden isolirten Epithelstücken überzeugt man sich, dass das Epithel mit einer Fläche der Mucosa aufsitzt.

Die Dicke des Epithels betrug (gemessen an Querschnitten von in Alkohol gehärteten Objecten) im Mittel 86 μ.

Soweit meine Erfahrungen reichen, findet sich ein solch' eigen tümlich gebautes Blasenepithel nur bei Testudo. Bei fast sämtlichen von mir untersuchten Wirbeltieren ist die Blase von einem geschichteten Pflasterepithel ausgekleidet. Ob die Zellen der obersten Lage Sekret ausstossen, war mir nicht möglich, am frischen Materiale zu beobachten, obwohl die Befunde an gehärteten Objecten darauf hindeuten würden. Zudem gelingt es mitunter Zellen zu beobachten (Fig. 3 g), welche ganz hell erscheinen und aussehen, als ob sie den grössten Theil ihres Zellinhaltes ausgestossen hätten. Auf welche Weise diese Sekretion dann vor sich ginge und zu welchem Zwecke, darüber könnte ich höchstens nur Vermuthungen vorbringen.

II. Das Blasenepithel von Emys europaea.
(Taf. XXVI, Fig. 4—6.)

Betrachtet man das frische Epithel an Flächenansichten (Fig. 4), so bemerkt man das schöne Mosaik aus polygonalen Feldern bestehend. Die einzelnen Epithelzellen variiren, was die Grösse der dem Cavum zugekehrten Fläche anlangt, innerhalb bedeutender Grenzen. An versilberten Flächenansichten kann man auch kleine polygonale Felder beobachten, ähnlich wie in Fig. 1 gezeichnet, welche dunkler als die benachbarten erscheinen. Es ist möglich, dass dies jüngere, an die Oberfläche gerückte Zellen sind, welche das Silberoxyd stärker reducirt und mehr metallisches Silber auf ihrer Oberfläche niedergeschlagen haben.

WENN man nun an Querschnitten (Fig. 5) oder an Isolationspräparaten das Epithel im Profile ansieht, so erscheint dasselbe als ein geschichtetes Pflasterepithel, welches mit dem Blasenepithel anderer Wirbeltiere grosse Uebereinstimmung zeigt.

Die Zellen der obersten, dem Cavum der Blase zugekehrten Lage wölben sich gegen dasselbe etwas vor, was man an frischen
Flächenansichten sehr deutlich beobachten kann. Hebt man den Tubus, so erscheinen die rinnenartigen Vertiefungen zwischen den einzelnen Epithelzellen dunkel, und die Felder hell, senkt man den Tubus, so tritt das umgekehrte Bild ein (Fig. 4.)

Die Zellen der obersten Lage sind nun entweder abgeplattete typische Flügelzellen, oder sie haben mehr cylindrische Formen (Fig. 6 a—d). Auf der dem Cavum zugekehrten Oberfläche erscheinen die Zellen von einem scharfen Contour begrenzt. Die Zells substanz erscheint an Isolationspräparaten aus Müll er'scher Flüssigkeit grob granulirt. Die einzelnen Zellen erscheinen mit man nichsfachen Facetten ausgestattet, zur Aufnahme der neben und unterhalb liegenden Epithelzellen. Die Kerne sind ellipsoidähnlich oder sphärisch und liegen in den abgeplatteten Zellformen mit ihrer Längsaxe in der Richtung der Oberfläche, in den cylindrischen Formen in der Längsaxe der Zelle.

Die Zellen der tiefer liegenden Schichten (man vergl. Fig. 5, 6 c, e) zeigen sehr man nichsfältige Formen. Cylindrische, keulen- und pyramid en förmige Zellen kann man unterscheiden. Eine ausgesprochene Lagedifferenzierung kann man nicht bemerken, da die keulen- oder cy linderförmigen Zellen der mittleren Lage mit ihren Fortsätzen sehr häufig bis zur Mucosa reichen.

In den keulenförmigen Zellen liegt der sphärische oder ellipsoidähnliche Nucleus im angeschwollenen Zellteil, während in den pyramid en ähnlichen Formen derselbe am Grunde der Zelle zu liegen kommt.

Der Nucleus zeigt in allen Zellenformen an Isolationspräparaten aus Müll er'scher Flüssigkeit das Fadengerüst von der Membran getrennt gewöhnlich als dichte Granulation, während an Osmiumpräparaten deutlich das Gerüstwerk des Chromatins, und hie und da auch Nucleoli zu beobachten sind.

Die Dicke des Epitheles betrug im Mittel (gemessen an Querschnitten) 46 µ. Auch im Blasenepithel von Emys ist es mir nicht gelungen kernlose Zellen — Rudimente — zu beobachten. Die Zellen der untersten Lage sitzen mit einer Fläche der Bindegewebslage auf, was man an abgelösten Epithelstücken oft sehr schön beobachten kann.

Kerntheilungfiguren gelang mir an meinen Präparaten nicht zu sehen; zudem hatte ich nicht Gelegenheit, dieser Frage grössere Aufmerksamkeit zuzuwenden, da mir nur wenige Exemplare von Emys europaea zur Verfügung standen.
Erklärung der Abbildungen auf Tafel XXVI.

Fig. 1. Blasenepithel von Testudo graeca nach Behandlung mit salpetersaurem Silberoxyd (1:800). 600 1.

Fig. 2. Querschnitt durch das Epithel nach Härtung in absolutem Alkohol und Tinction mit Hämatoxylin. 400 1.

Fig. 3. a—g Epithelzellen nach Isolation in Müller'scher Flüssigkeit. a, b, c, d, g Zellen der obersten Lage, e, f Zellen der obersten Lage. Stz, Stützzellen. 600 1.

Fig. 4. Blasenepithel von Emys europaea frisch in Humor aqueus. 400 1.

Fig. 5. Querschnitt durch das Epithel nach Härtung in 0,5 procent. Osmiumsäure. 600 1.

Fig. 6. a—e Epithelzellen nach Isolation in Müller'scher Flüssigkeit. 600 1.

Einige Beobachtungen an den Negern und Buschmännern Afrika's.

Von Dr. W. Wolff in Berlin.

Es ist, wie bekannt, von E. Haeckel eine Eintheilung des Menschengeschlechtes gemacht worden, die sich vornehmlich auf die Beschaffenheit der Behaarung des Menschen stützt. In dieser Eintheilung wurden die Wollhaarigen in 1. Büschelhaarige, zu denen die Hottentotten, Buschmänner und Papuas gehören und 2. Vlieshaarige, zu denen die afrikanischen Neger und Kaffern gehören, eingetheilt. Unter büschelhaarig versteht man eine ungleichmäßige Verteilung der Haare in der Weise, dass dieselben in einzelnen

Anschliessend hieran möchte ich bemerken, dass nach Messungen, die ich an Lebenden vorgenommen habe, in manchen Gegenden Westafrikas die Zahl der Mesocephalen und Brachycephalen die der Dolichocephalen überwiegt.

Ich lasse die Maasse hier folgen: 1)

Einige Beobachtungen an den Negern und Buschmännern Afrika’s.

I. Leute aus Boma und dem dortigen Hinterlande Majumba (unterer Congo):

1) Länge 191,5 2) 191,5
Breite 148,0 = 77 150,0 = 78
Stirnbreite 111,0 107,0

3) Länge 200,5 4) 181
Breite 150,0 = 74 132,5 = 73
Stirnbreite 166,0 98,0

5) Länge 188,5 6) 189
Breite 151,0 = 80 139 = 74
Stirnbreite 115

Frau

7) Länge 178,0 8) 182,0
Breite 142,0 = 80 145,0 = 80
Stirnbreite 100,0 100,0

9) Länge 183,0 10) 184
Breite 140 = 76 152 = 82
Stirnbreite 103 98

11) Länge 178,0 12) 180,0
Breite 146,0 = 82 144,0 = 80
Stirnbreite 105,0 96,0

13) Länge 189,0 14) 183,0
Breite 135,0 = 72 148,0 = 81
Stirnbreite 101,0 103,0

15) Länge 192,0 16) 190,0
Breite 157,0 = 82 150,0 = 79
Stirnbreite 101,0 99,0

17) Länge 190,0 18) 189,0
Breite 142,0 = 74 146,0 = 78
Stirnbreite 103,0 105,0

Frau

19) Länge 172,0
Breite 135,0 = 78
Stirnbreite 95

II. Kabinda (an der Meeresküste etwas nördlich von Banana).

Frau

20) Länge 175 21) 200
Breite 140 = 80 154 = 77
Stirnbreite 99 109

22) Länge 191 23) 191
Breite 142 = 74 153 = 81
Stirnbreite 107 104

Tabelle für 23 Schädel.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Schädelzahl</th>
<th>Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Dolichocephalen</td>
<td>72</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>12 Mesocephalen</td>
<td>76</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>5 Brachycephalen</td>
<td>81</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>82</td>
<td>3</td>
</tr>
</tbody>
</table>

Es stehen bekanntlich die beiden Darmbeine bei den Negern steiler als bei den Indogermanen, daher auch bei den Weibern die Hüften stets verhältnismässig schmal sind. Das ganze Becken ist ausserdem um seine horizontale Axe gedreht, so dass das Kreuzbein mehr nach hinten steht als bei uns; es treten daher die Gluteen sehr stark hervor, d. h. der hintere prominirt sehr. Häufig, doch bei weitem nicht durchgängig habe ich gesehen, dass der Calcaneus sehr weit nach hinten vorspringt, daher die Achillessehne einen spitzen Winkel mit dem hinteren Ende des Fersenbeins macht. Diese Bildung sowohl wie die mehr horizontale Lage des Beckens kann man als eine grössere Annäherung an die Thierform betrachten. — Die Nasenlöcher der Neger sind so eingerichtet, dass sie wegen der den kühleren Regionen gegenüber verdünnten Tropenluft und des dadurch bedingten verstärkten Verbrauchs möglichst viel Luft in einer gegebenen Zeit durchlassen können, nähern sich daher der Kreisform, es wird dadurch die Nase platter und breiter als die unsrige, bei der die Nasenlöcher langoval sind. Es ist ferner, um die Atmung möglichst zu erleichtern, die Nase im Allgemeinen kürzer und sehen die Nasenlöcher mehr nach vorn als die unsrigen, die abwärts gerichtet sind.
Die beiden Keimblätter und der Mittelkeim.

Von

Dr. W. Wolff in Berlin.

Hierzu Tafel XXVII.

Der erste Forscher, der die Zusammensetzung des Keimes aus blattartigen Schichten nachwies, war Pander und zwar unterscheidet derselbe an dem Keime des Huhnes erst nur eine Schicht zusammenhängender Körner, das Schleimblatt, an dessen Außenseite alsbald eine dünner durchsichtige Lage, das seröse Blatt entsteht, zwischen diesem bildet sich seine dritte Lage, die Gefässschicht. Van Baer ging einen Schritt weiter, indem er fand, dass sich die mittlere blattförmige Anlage wiederum in zwei Blätter theilte, von denen er das äussere Fleischschicht nannte und mit dem oberen Blatte, dem Hautblatte, zusammen als animale Anlage bezeichnete; das innere nannte er Gefässschicht und bezeichnete es mit dem unteren Blatte, dem Schleimblatte zusammen als vegetative Anlage. Von Remak an kann man eine neue Epoche in der Deutung der blattförmigen Embryonalanlagen rechnen, die für die Auffassung der Entwicklung der gesamten Metazoen von Bedeutung war. Remak beschreibt die Entstehung der blattförmigen Embryonalanlagen beim Huhne vom Zeitpunkte des gelegten Eies an und zwar besteht nach ihm der Keim des frisch gelegten Eies aus einem fester gefügten äusseren Blatte, dem äusseren Keimblatte, und einer loser gefügten inneren Schicht, die er inneres Keimblatt nannte. In Folge der Bebrütung scheidet sich vom inneren Keimblatte eine dritte blattartige Anlage, das Darmdrüsenblatt ab, den Rest des inneren Keimblattes bezeichnet Remak als mittleres Keimblatt; so ist das innere Keimblatt in das mittlere und in das Darmdrüsenblatt aufgegangen. Ferner beschreibt er, wie das mittlere Keimblatt nun in streifenförmiger Ausdehnung im Primitivstreifen mit dem äusseren Keimblatte ver-
Dr. W. Wolff:

schmilzt und schliesst aus guten Gründen, dass in dieser Ver-einigung der beiden Keimblätter höchst wahrscheinlich ein Aus-tausch der Elemente stattfände; den bestimmten Nachweis konnte er nicht führen, da die mikroskopische Technik noch nicht soweit vorgeschritten war, dass man den Embryo in zusammenhängenden Schnittreihen untersuchte.

Die thatsächlichen Befunde Remak's sind vollständig richtig; dagegen ist seine Auffassung derselben und die damit in Zusam-menhang stehende Bezeichnung eine leider irrthümliche gewesen und ist vielleicht mit ein Grund, dass die Verwirrung in der Auf-fassung und Deutung der Keimblätter jetzt eine so grosse ge-worden ist, dass es z. B. bei den Wirbelthieren keine Combination für die Entstehung des mittleren Keimblattes giebt, die nicht ihre Vertreter hätte. So hat die Ansicht, dass das mittlere Keimblatt aus dem äusseren, wie aus dem inneren, wie endlich aus keinem von beiden Keimblättern entstanden sein soll, ihre Vertreter unter den Forschern.

Ein Fortschritt war es, dass Remak den Namen „Keimblatt“ für die primitiven embryonalen blattförmigen Anlagen und deren verschiedene Bezeichnungen einführte; durch diesen Namen war die Verwandtschaft der Blätter unter sich angedeutet, und es war eine berechtigte Forderung, dass man unter diesem Namen gleich-wertige Grössen zusammenfasste, die auch womöglich auf eine homologe Weise sich gebildet hätten, und zwar, wie der Name Keimblatt andeutete, als blattartige Anlagen aus dem Keime. Der Fehler der Remak'schen Auffassung und Bezeichnung liegt darin, dass er den Theil des Keimes, der nach Abzug des äusseren Keimblattes übrig bleibt, inneres Keimblatt nannte, obgleich dieser Theil des Keimes überhaupt noch gar keine blattförmige Anordnung zeigt, was auch Remak wohl bekannt war und aus seiner Beschreibung dieses Theiles des Keimes klar hervorgeht. Die Folge nun, die aus dieser Benennung resultirt, ist die, dass alle weiteren Differenzirungen dieses Theiles des Keimes als aus dem inneren Keimblatte entstanden aufgefasst werden müssen, und doch bildet sich das wirkliche innere Keimblatt erst aus diesem Theile des Keimes. Ein anderer Fehler dieser Benennung liegt darin, dass, nachdem das innere Keimblatt Remak's in das mittlere und das Darmdrüsenblatt aufgegangen ist, jetzt der Keim aus einem äusseren und einem mittleren Keimblatte bestehen soll, ohne ein inneres zu
Die beiden Keimblätter und der Mittelkeim.

besitzen. Letztere Inconsequenz machte sich allerdings bald fühlbar, obgleich dies nirgends klar ausgesprochen ist, und wurde von den Forschern alsbald in soweit ausgeglichen, als dieselben von dem inneren Keimblatte Remak's, das sie primäres inneres Keimblatt oder inneres Keimblatt im weiteren Sinne nannten, sich das mittlere als einen Theil dieselben abspalten liessen, und nun den Namen secundäres inneres Keimblatt oder inneres Keimblatt im engeren Sinne auf den übrig bleibenden Rest übertrugen, den Remak als Darmdrüsenblatt bezeichnet hatte. Dieser Auffassung huldigen die meisten Forscher 1) noch heute und doch liegt der Fehler derselben auf der Hand: man stellt nämlich zwei gleichzeitige und gleichwerthige Bildungen so dar, als wäre die eine aus der anderen entstanden.

Für Remak hatte die Benennung der blattartigen embryonalen Zellschichten noch nicht die Bedeutung, die wir derselben heute beilegen müssen, da sich inzwischen herausgestellt hat, dass die Keimblätter Bildungen sind, die wir bei den gesammten Metazoen finden; wir können dieselben jedoch nur dann mit einander vergleichen, wenn wir homolog entstandene Bildungen mit diesem Namen bezeichnen und nicht jede beliebige blattförmige Anlage im Embryo Keimblatt nennen. Dazu kommt noch der Umstand, dass bei den niedrigen Classen der Metazoen überhaupt nur zwei Keimblätter vorhanden sind, wir also genau prüfen müssen, ob einer bei den höheren Classen der Metazoen neu auftretenden dritten Schicht auch der Werth und die Bedeutung eines Keimblattes zukommt. Wir müssen uns also vor allem genau darüber verständigen, was wir als Keimblatt bezeichnen wollen und dürfen. Aus diesem Grunde werde ich erst kurz die allgemeine Bildung der Keimblätter der Metazoen recapituliren. Hieraus werden sich dann die den Keimblättern besonders eigenthümlichen Momente ergeben. Da aber die Keimblattbildung ihren Ursprung der Gastrula-

1) So lässt Balfour in seinem jüngst erschienenen Werke der vergleichenden Embyologie durchgängig den Vesoblast aus dem primitiven Hypoblast entstehen. Auch die Stricker'sche Schule, Peremuschko etc. machen hiervon keine Ausnahme, denn wenn dieselben vom Boden der Keimhöhle Zellen zwischen die beiden primitiven Keimblätter wandern lassen, und aus diesen Zellen das mittlere Keimblatt entstehen soll, so geht es ebenfalls aus dem primitiven Hypoblast hervor.
bildung verdankt, die Form der Gastrula wiederum zum Theil abhängig von der Beschaffenheit des Eies ist, so lasse ich hier die Entstehung der verschiedenen Eiformen und die Wechselbeziehungen zwischen Ei und Gastrula, wie sie auf Taf. XXVII, Fig. 1 bis 7 graphisch dargestellt sind, folgen. Voran stelle ich einige Voraussetzungen, auf welche sich die weiter unten folgenden Schlüsse aufbauen und die wohl kaum einen Widerspruch finden werden:

Die ursprüngliche Form des primitiven Eies im Ruhezustand ist die Kugelform, die das Ei auch trotz verschiedener Veränderungen im Inneren stets wieder anzustreben sucht; es sind hier Veränderungen gemeint, die durch die grösseren Anforderungen bei höherer Entwicklung des zukünftigen Organismus schon an das Ei gestellt werden.

Der Kern der Zelle, in unserem Falle das Keimbläschen, ist durch bestimmte Kräfte nach bestehenden Gesetzen an seiner Stelle fixirt. Aus der Betrachtung der Eier der niedersten Organismen und der jungen Eier zu schliessen, scheint die Lage des Keimbläschens in der Mitte des Bildungsdotters, also ursprünglich im Centrum des Eies zu sein.

Ferner können wir aus der Kenntniss der Entwicklung verschiedener Eier, so namentlich der Amphibiencier, als Gesetz hinstellen, dass im befruchteten Ei das Protoplasma sich möglichst so lagert, dass die Zelle, die aus einer bestimmten Stelle dieses Protoplasmas durch die Furchung hervorgeht, auch sofort an dem ihr wenigstens vorläufig zukommenden Platz oder ihrem Bestimmungsort thunlichst nahe sich befindet.

Fig. 1 stellt ein primitives Ei vor, die untere Horizontale theilt den Bildungsdotter sämtlicher Eier ohne Rücksicht auf die oben angedeuteten späteren Veränderungen derselben in zwei Hälften und stellt zugleich die erste horizontale Furchungsebene vor. Die Vertikale theilt ebenfalls den Bildungsdotter in zwei Hälften ohne Rücksicht auf spätere Veränderungen und stellt die erste vertikale Furchungsebene dar. Beide Ebenen gehen nach der obigen Voraussetzung selbstverständlich durch den Kern. Da bei dieser Theilung ein oberer und unterer Eipol vorausgesetzt ist, so mag hier erwähnt werden, dass der obere Pol bei unbefürchteter Beweglichkeit des Eies der dem Lichte zugekehrte ist.

Durch die Furchung der Fig. 1 a entsteht die Blastula Fig. 1 b
Die beiden Keimblätter und der Mittelkeim.

und aus ihr durch Einstülpung der unteren Hälfte gegen die obere, durch embolische Invagination, die Gastrula.

An der Gastrula unterscheiden wir bekanntlich eine äussere Zellschicht, das äussere Keimblatt, eine innere Zellschicht, das innere Keimblatt, die Höhle, das Archenteron und die Verbindung derselben mit der Aussenwelt, den Blastogorus oder das Prostoma.

Wenn nun das Ei durch den länger dauernden Entwicklungs-process des Embryo gezwungen wird, Nahrung im Vorrath mitzunehmen, so ist es natürlich, dass dieselbe in dem Theile des Eies deponirt wird, der im Blastulastadium dem späteren inneren Blatte der Gastrula entspricht resp. ihm am nächsten gelegen ist, weil dieser Theil ausschliesslich die Aufgabe der Ernährung des Organismus übernommen hat. Auf diese Weise entsteht ein Ei, wie es schematisch in Fig. 2 wiedergegeben ist und in Fig. 2a gezeichnet ist, nachdem es wieder die Kugelform angenommen hat, An solchen Eiern kann man den Bildungspol, der mit dem oberen Pol übereinstimmt, von dem Dotterpol (unteren Pol) unterscheiden und zwar nimmt der Bildungsdotter mit der Entfernung von seinem Pole in dem Verhältnisse ab, wie der Nahrungsdotter zunimmt. Wahrscheinlich steht die Linsenform des Keimbläschens auch mit der Dotteraufnahme des Eies im Zusammenhange, insofern nämlich durch dieselben das ursprüngliche kugelförmige Keimbläschens zusammengedrückt wird. Ferner muss das Keimbläschens, wenn es seinen Standort in der Mitte des Bildungsdotters beibehalten soll, dem oberen Pole näher rücken. Durch diese Ortsveränderung, die das Keimbläschens dem ganzen Ei gegenüber annimmt, wird die inäquale Furchung bedingt, insofern die erste horizontale FurchungsEbene, die auch die vorhandenen (gewöhnlich vier Kerne) trifft, wohlen Bildungsdotter halbirt, das Ei jedoch in zwei ungleiche Stücke theilt. Ist die Nahrungsdotteraufnahme des Eies noch keine allzu grosse, so übt sie keinen Einfluss auf die Art der Gastrulabildung aus, es wird nur, wie Fig. 2c zeigt, die archentorische Höhle kleiner, und überwiegen, wie schon im Blastulastadium zu sehen ist, die unteren Zellen an Masse bei weitem die oberen. Fig. 2b.

Die ersten Differenzirungen der Gastrula bestehen bekanntlich in der Abflachung der einen Seite und in der Bildung des Kopfes (Mundes) gegenüber dem Blastoporus. Diese beiden Momente haben jedoch keine Rückwirkung auf die Eiform, dagegen eine
weitere Veränderung, die bei den Wirbelthieren auftritt, nämlich die ausserordentliche Ausbildung des unteren Rückenendes, die bei den niederen Wirbelthieren in der Form des Schwanzes, bei den höheren unter Rückbildung des Schwanzes in der Form der hinteren Extremitäten sich darbietet. Die Folge hiervon ist eine gesteigerte Anforderung von Bildungsmaterial an das untere Rückende der Gastrula. Die Gastrula stellt diese Forderung wiederum an den dieser Stelle entsprechenden Theil der Blastula und diese an das Ei. Es entsteht so durch besonderes Wachstumsbedürfniss einer bestimmten Stelle des Eies ; die asymmetrische Anhäufung des Bildungsdotters um das Keimbläschen (das, wie vorausgesandt, an einer bestimmten Stelle des primitiven Eies fixirt gedacht werden muss), wie sie schematisch in Fig. 3 gezeichnet ist und in Fig. 3 a, nachdem das Ei wiederum die Kugelform erreicht hat. Diese asymmetrische Anhäufung des Bildungsdotters um das Keimbläschen findet ihren Ausdruck in der asymmetrischen Furchung insofern die Furchungsebene durch den Kern gehen muss. Ob und in wieweit die asymmetrische Anhäufung des Bildungsdotters um den Kern speziell auch auf Rechnung des Mittelkeims, von dem weiter unten die Rede sein wird, gesetzt werden darf, wird von dem ev. sicheren Nachweis einer asymmetrischen Furchung bei Eiern wirbelloser Thiere abhängen. Die asymmetrische Furchung ist wohl von der inäqualen Furchung zu unterscheiden, denn letztere beruht, wie oben aneinandergesetzt, auf der Aufnahme von Nahrungsmaterial in das Protoplasma der Zelle, findet gegenüber der asymmetrischen Furchung ihren Ausdruck in der Grösse ihrer Theilungsendproducte und bezieht sich auf die beiden Theile des Eies, die durch eine auf der Verbindungsebene des Bildungspol mit dem Dotterpol senkrecht stehenden Ebene gebildet werden. Die asymmetrische Furchung, auf die zuerst Kölliker beim Hühnchen aufmerksam gemacht hat, findet sich selbstverständlich auch bei den Reptilien und Fisch-Eiern. Bei den Amphibieneiern, bei denen meines Wissens nach diese Asymmetrie bisher nicht beachtet wurde, kann man dieselbe ebenfalls sehr deutlich sehen. Es geht nämlich die erste Furchungsebene nicht durch die Mitte des Eies, sondern theilt dasselbe in zwei ungleiche Hälften, die dritte Furchungsebene (erste horizontale Ebene) steht ausserdem nicht rechtwinklig zu den beiden vertikalnen, sondern macht einen stumpfen Winkel mit der ersten vertikalen an der Seite der
Die beiden Keimblätter und der Mittelkeim.

grösseren Hälfte. In wieweit die als nicht ganz regulär beschriebene Furchung der Säugethiereier auf eine asymmetrische Furchung, anstatt, wie bisher, auf eine inäquale zu beziehen ist, müssen spätere auf diesen Punkt gerichtete Untersuchungen lehren.

Die Asymmetrie der Furchung in Verbindung mit der steigenden Zunahme an Nahrungsdotter des Eies geben der Blastula schon eine ganz veränderte Form. Fig. 3 b zeigt das Schema einer solchen Blastula. Die Blastulahöhle ist durch die ausserordentliche Aufnahme von Nahrungsdotter der unteren Zellen sehr verkleinert worden. Das Auffallendste jedoch an einer solchen Blastula ist die Asymmetrie der beiden oberen Hälfen, die Anhäufung von Bildungsmaterial an einem bestimmten Theile der Blastula. Stülpt sich nun der durch die Blastulahöhle (Keimhöhle) getrennte untere Theil gegen den oberen ein, so liegt es auf der Hand, dass die Seite mit dem überwiegenden Bildungsmaterial auch einen grösseren Theil der unteren Hälfte in sich aufnehmen kann. Es entsteht auf diese Weise eine asymmetrische Gastrula, wie sie Fig. 3 c zeigt. An der Umschlagstelle, dem Blastoporus, geht auch hier die äussere Zellschicht der Gastrula in die innere über. Gemeiniglich stellt man sich die Invagination, bei der der untere Theil der Blastula durch die Aufnahme von Nahrungsdotter ausserordentlich über den oberen an Masse überwiegt, so vor, als wüchse der obere Theil um den unteren herum. Bei dieser Auffassung denkt man sich den unteren Theil als todte Masse, die den festen Punkt abgiebt. Man nennt diese Art der Invagination im Gegensatz zu der embolischen die epibolische Invagination; in der That jedoch ist der Vorgang bei beiden Arten der Invagination der gleiche, der Unterschied besteht nur in der Anschauungsweise, welcher von beiden Hälften wir die lebendige Kraft bei der Invagination bemessen. Aller Wahrscheinlichkeit nach wird wohl jede der beiden Seiten, die obere wie die untere, an der Invagination durch Arbeit beteilt sein.

Der Blastoporus liegt bei dieser Gastrulation nicht in dem Ende einer Ebene, die die Gastrulahöhle in zwei symmetrische Hälften theilen würde, sondern ist von dieser Ebene nach der Seite des geringern Bildungsmaterials hin verschoben, und zwar scheint nach meinen Beobachtungen an Amphibieneieren der Blastoporus (Rusconi'sche After) am Endpunkt der Kreuzungslinie zu liegen, die durch die beiden ersten vertikalen Furchungsebenen gebildet wird,
von denen, wie oben erwähnt, die erste nicht durch die Mitte des Eies geht. Doch kann ich diese Beobachtung nicht als ganz sicher hinstellen, da nicht alle Fehlerquellen bei den diesbezüglichen Beobachtungen ausgeschlossen waren; namentlich sind Eigbewegungen der Eier in ihren schleimigen Hüllen nicht undenkbar.

Wie der Entwicklungsgang aber vielfach verschiedene Wege hat dasselbe Ziel zu erreichen, so finden wir auch bei einer Reihe von Metazoen eine von der Obigen abweichende Dotteraufnahme des Eies. Es kann nämlich das Ei auch den Nahrungsdotter im Centrum um den Kern aufnehmen. Da in diesem Falle jedoch eine Invagination nach der Furchung nicht gut möglich ist, so lagert sich schon im Ei der Bildungsdotter so, dass es nur eines concentrischen Spaltungsprocesses der Blastulazellen mit nachfolgender Trennung derselben an einem Punkt bedarf, um aus der Blastula die Gastrula zu bilden. Diese Art der Gastrulation, die Gastrulation durch Delamination genannt wird, muss man als eine Abkürzung des Bildungsganges auffassen, insofern schon im Ei ein Theil des Bildungsdotters sich in den anderen einstülpt.

Nimmt der Nahrungsdotter immer mehr im Verhältniss zum Bildungsdotter zu, so entrückt er schliesslich der Machtsphäre des Letzteren, d. h. der Bildungsdotter ist nicht mehr im Stande den Nahrungsdotter mit sich zu theilen, zu furchen. Auf diese Weise entsteht die partielle Furchung des Eies. Bei derartigen Eiern findet sich ebenfalls schon im Ei, sei es während oder gar vor der Furchung, eine teilweise Einstülzung der unteren Bildungsdotterhälfte gegen die obere und es erhält der Bildungsdotter auf diese Weise eine biconvexe Linsenform, die sich der concavconvexen, das ist der Form einer möglichst flach ausgebreiteten Gastrula, nähern kann. Bei diesen Eiern können wir alle drei erwähnten Arten der Gastrulation beobachten. Insofern nämlich erstens der untere Theil des Bildungsdotters sich dem oberen schon vor der Furchung genähert hat, erhalten wir die Gastrulation durch Delamination, insofern er während oder unmittelbar nach der Furchung sich dem oberen nähert, haben wir die embolische Gastrulation und schliesslich finden wir auch bei einem Theile dieser Eier mit partieller Furchung die epibolische Invagination. Bei den Eiern nämlich, bei welchen auf der grösseren der beiden asymmetrischen durch die erste Furchungsebene gesetzten Hälften, der Bildungsdotter immerhin im Vergleiche zum Nahrungsdotter
Die beiden Keimblätter und der Mittelkeim. 433

in hinreichender Menge vorhanden ist (Fig. 6 a), wird noch der Versuch einer epibolischen Gastrulation gemacht, und wir erhalten auf diese Weise auf der einen Seite der Gastrula (der späteren hinteren Seite des Embryo) eine Blastoporslippe mit einer geringen Einstülpung, einem Rudiment des Blastoporus (Fig. 6 b. bl). Bis in die Gastrulahöhle führt dieser Blastoporus nicht, da dieselbe durch den an drängenden Nahrungsdotter zum Theil verstopft ist. Auf dem ganzen übrigen Rande der Gastrula, an dem das Bildungsmaterial in geringerer Masse vorhanden ist, kommt es nicht mehr zur epibolischen Invagination, sondern es wird der Rand der hier auf die beiden zuerst erwähnten Weisen gebildeten Gastrula vom angrenzenden Nahrungsdotter fest zusammen gepresst. Ein sichtbarer Blastoporus ist ebenfalls nicht an diesem Theile des Randes vorhanden; doch geht auch hier wie bei jeder Gastrula die äussere Auskleidung derselben in die innere über. Bei den Eiern mit partieller Furchung, bei welchen am ganzen Rande des Keimes der Bildungsdotter im Vergleich zum Nahrungsdotter in zu geringer Menge vorhanden ist, um eine theilweise epibolische Gastrulation zu bewirken (Fig. 7 a), wird der Rand des Keimes in seiner ganzen Peripherie durch den angrenzenden Nahrungsdotter zu einer ganz dünnen Platte zusammengedrückt. Es existirt somit auch kein wirklicher Blastoporus oder auch nur ein Rudiment desselben; theoretisch liegt der Blastoporus zwischen dem Keimrande und dem angrenzenden Nahrungsdotter. Die Gastrulahöhle ist die sog. Keimhöhle, während vordem die Blastulahöhle durch die sog. Furchungshöhle repräsentirt war.

In das beschriebene Schema passen sämtliche Eier mit ihren auf die Befruchtung folgenden Entwicklungsstadien; nur die Eier einer Thierklasse machen eine scheinbare Ausnahme, nämlich die Säugethiereier. Dieselben müssten, wie man a priori annehmen sollte, als Eier ohne Nahrungsdotter dem Entwicklungstypus der Fig. 1 folgen und eine Gastrula durch embolische Invagination bilden; dem ist jedoch nicht so, sondern die Gastrulation dieser Eier gleicht am meisten der Delamination mit gleichzeitiger und nachfolgender Epibolie eines Theiles des Bildungsdotters um einen Hohlraum. Diese Art der Gastrulabildung findet ihre Erklärung in der Annahme, die auch schon von anderer Seite betont ist, dass die Säugethiereier zurückgebildete Eier mit partieller Furchung seien. Abgesehen von dem verschwundenen Nahrungsdotter sind
Dr. W. Wolff:

die übrigen Verhältnisse der Säugethiereier dieselben geblieben als die der oben zuletzt beschriebenen Eier mit Nahrungsdotter, so namentlich die Einstülpung der unteren Bildungsdotterhälfte gegen die obere.

Fig. 5 stellt ein Säugethierei vor, das in einem Stadium dicht vor der gänzlichen Rückbildung des Nahrungsdotters gedacht ist. Der Rand des ursprünglich linsenförmigen Keimes ist am unteren Theile des Eies verschmolzen. Der Bildungsdotter umfasst noch den letzten Rest vom Nahrungsdotter, oder nach Verschwinden desselben eine Vacuole als Ausdruck des hier noch am wenigsten dichten Bildungsdotters. Wird nun das Ei während oder nach der Furchung durch die Aufnahme von Flüssigkeit bedeutend vergrößert, wie dies beim Säugethierei der Fall ist, so wird die Flüssigkeit hauptsächlich dort Aufnahme finden, wo der Nahrungsdotter zuletzt verschwunden ist und wir uns den Bildungsdotter noch am wenigsten dicht vorstellen können. Durch den Druck der Flüssigkeit wird der innere Theil des Bildungsdotters, der noch nicht soweit in der Entwicklung vorangeschritten ist eine zusammenhängende Membran zu bilden, an einer Stelle des schon membraneösen äusseren Theiles des Bildungsdotters zusammengedrängt und muss nun von hier aus um den entstandenen Hohlraum herumwachsen (Fig. 5 b).

Wenn ich mir erlauben darf eine Eintheilung der Eier nach den des Längern auseinandergesetzten Gesichtspunkten vorzuschlagen, so würde dieselbe zum Theil auf der alten von Remak, zum Theil auf der neuen von Balfour fussen und in folgender Tabelle ihren Ausdruck finden.

Furchung.

I. Holoblastische 1) Eier äqual . . . \{symmetrisch.
\{asymmetrisch.

II. Meroblastische Eier \{a. total \{telolecithal \{inäqual \{symmetrisch
\{centrolecithal \{asymmetrisch
\b. partiell \{telolecithal symmetrisch
\{controlecithal (?) \{asymmetrisch.

Aus der dargelegten Auffassung der Gastrula der verschiedenen Metazoen geht hervor, dass ich mich der wohl zuerst von Kupffer vertretenen Anschauung, als entspräche der Primitivstreifen mit der Primitivrinne der Vögel und Reptilien einem Theile

1) Zu den holoblastischen Eiern sind hier nur Eier ohne Nahrungsdotter gerechnet.
Die beiden Keimblätter und der Mittelkeim.

435

Ferner möchte ich gegen die Auffassung Kupffer's anführen, dass der Keim beim Auftreten der Primitivrinne stets schon zweiblättrig ist, daher durch eine nunmehr auftretende Einstülpung eines Blattes dreiblättrig resp. fünfblättrig werden müsste.

Dr. W. Wolff:

verbindet. Nach meiner Auffassung entspricht dieser Streifen bei den Ichthyopsiden einem Theile der sog. Narbe (blastotrema Kupffer's) der Keimhaut bei den Sauropsiden und leitet seinen Ursprung daher, dass diese Metazoen den Gastrulationstypus, der in Fig. 6 b dargestellt, einhalten, also an einer Stelle noch eine thatsächliche Invagination zeigen. An dieser Stelle kann der Keim nicht weiter um den Dotter herumwachsen, es bildet sich daher der betreffende Streifen durch das Verschmelzen der seitlich von dieser Stelle befindlichen Keimränder. Den Primitivstreifen dagegen besitzen die Ichthyopsiden, wie oben auseinandergesetzt wurde, ausserdem.

Diese Narbe nun, die sich nach der Umwachsung der Eier durch die Keimhaut am Dotterpole bildet, sei sie nun sternförmig wie bei den Vögeln und Reptilien oder noch ausserdem mit einem Stiele versehen (morgensternförmig) wie bei den Fischen, gehört nicht mehr zur Gastrulabildung, sondern ist als eine weitere Entwicklung der schon vollständig ausgebildeten Gastrula anzusehen. Diese Bildung entsteht dadurch, dass der Gastrulamund sich schliesst, nachdem er über seine Nahrung herübergewachsen ist. Der Embryo hat inzwischen längst die Phase der Gastrula durchlaufen und ist in dieser Zeit der weitergewachsenen Urmundrand zu einer ganz untergeordneten und vorübergehenden Bildung, nämlich zu einem Darmdivertikel herabgesunken.

Es mag hier der Platz sein, auch des oben erwähnten Unterschiedes zu gedenken, der in der Bildung des Hirn- und Rückenmark-Canals der Knochenfische, Lepidosteus und Petroemyzon einerseits und der übrigen Wirbelthiere andererseits besteht; derselbe ist nicht so gross als es auf den ersten Blick den Anschein hat. Es wird nämlich auch bei den Wirbelthieren, bei denen das Hirn und Rückenmark durch Verschmelzung zweier Wülste nach vorangegangener Rinnenbildung entsteht, der hintere Theil des Rückenmarks, der Schwanztheil desselben derart gebildet, dass sich Zellenmaterial in der Verlängerung des Rückenmarks anhäuft, letzteres auf diese Weise als solider Zapfen weiter wächst, in welchem dann sekundär durch Spaltung von der ursprünglichen Hirn-Rückenmarkshöhle aus und als Fortsetzung derselben der Rückenmarkscanal gebildet wird. In sehr grober Weise sieht man diesen Vorgang bei den Amphibien, doch findet derselbe bei sämtlichen Wirbelthieren statt. Ich bin der Ansicht, dass diese Erscheinung, nämlich die strichförmige Anhäufung von Zellenmaterial
Die beiden Keimblätter und der Mittelkeim.

Der van Baer'sche Schild mitsamt dem Primitivstreifen beim Reptil, Vogel und Säugther entspricht nach meiner Auf- fassung einer ebenso geformten Bildung bei den Amphibien, näm- lich der ersten Anlage des Cerebrospinalsystems, die ebenfalls sich der Birnenform nähert. Am verschmälerten Ende dieser Birne geht der Rückenmarkscanal in das Archenteron über und bildet so den neurenterischen Canal. Denken wir uns nun am Ende des Primitivstreifens der Vögel und Reptilien zu einer bestimmten Zeit eine Höhle 2) als Analogon des neurenterischen Canals der Amphibi-

2) Dass der von Koller beschriebene Sichelknopf etc. vielleicht der Ausdruck dieser beginnenden Canalbildung ist, scheint mir nicht unwahr- scheinlich.

Fassen wir das Wesentliche aus dem beschriebenen Gastrulationsprozess zusammen, so liegt dies in Folgendem: Durch die Gastrulation entwickeln sich aus dem gefurchten Theile zwei zusammenhängende Schichten, von denen die eine in die andere eingestülpt resp. von der anderen umschlossen wird. Am Umschlagsrande dieser Schichten, der die nach Aussen führende Öffnung, den Blastoporus umschliesst, geht die äussere Schicht, die wir mit dem Namen äusseres Keimblatt bezeichnen, in die innere, die inneres Keimblatt genannt wird, über. Von den beiden Keimblättern
ist das äussere im Wesentlichen das primitive äussere Integument und stellt die schützende empfindende und bewegende Schicht dar, das innere ist im Wesentlichen die primitive innere Auskleidung und stellt die resorbirende und verdauende Schicht vor.

In gleicher Weise sehen wir ja auch da, wo das innere Keimblatt uns phylogenetisch zuerst als selbständige Bildung vor
die Augen tritt, dasselbe sich direct vom gefurchten Keime aus bilden, nicht aber vom äusseren Keimblatte. Wenigstens sehen wir bei Dicycema, das gleichsam das Zwischenglied zwischen den Protozoen und Metazoen bildet, und bei welchem die dem inneren Keimblatte entsprechende Bildung im ausgewachsenen Zustand des Thieres aus einer einzigen Zelle besteht, dieses innere Keimblatt nicht aus dem äusseren Keimblatte hervorgehen, sondern aus einer Zelle des Keimes, die vorher nicht dem Verbande des äusseren Keimblattes angehört hat. Ich lasse hier die Beschreibung dieses Bildungsprocesses, wie sie Balfour nach den Untersuchungen von van Beneden gibt, folgen:

Ist der Keim vollständig ausgebildet, so erleidet er eine ganz ähnliche Furchung wie ein gewöhnliches Ei. Er zerfällt erst in zwei und dann in vier annähernd gleiche Segmente. Von den vier Segmenten bleibt jedoch eines während der ganzen übrigen Entwicklung durchaus passiv. Die anderen drei teilen sich und ordnen sich derartig, dass sie die passive Zelle nach Art eines Bechers teilweise einschliessen. Die aus ihrer Theilung entstandenen sechs Zellen theilen sich dann abermals, so dass zwölf Zellen vorliegen, welche die passive Zelle fast ganz umschliessen, indem nur an einem Punkt eine kleine Öffnung bleibt. Der ganze Vorgang, durch welchen die centrale Zelle eingeschlossen wird, ist, wie E. van Beneden zeigt, identisch mit der Bildung einer Gastrula durch Epibolie und die Stelle, wo die centrale Zelle unbedeckt bleibt, entspricht dem Blastoporus. Letztere geht später in die Hypoblastzelle, die peripherischen Zellen in das Epiblast des ausgewachsenen Thieres über.

So wenig wie hier das innere Keimblatt aus dem äusseren entstanden ist, so wenig entsteht der Mittelkeim, wie ich diesen Zellencomplex genannt habe, aus dem inneren Keimblatt und alle die Forscher, die denselben vom primären inneren Keimblatte ableiten, beweisen eigentlich nur diese Thatsache, denn in dem Augenblick, wo aus dem primären inneren Keimblatte sich das sekundäre innere Keimblatt abspaltet, ist auch durch diesen

2) o. c. v. V.
Die beiden Keimblätter und der Mittelkeim.

Theilungsprozess der Mittelkeim 1) als Rest des primären inneren Keimblattes gebildet; wir können aber nur das sekundäre innere Keimblatt mit dem inneren Keimblatte der diploblastischen Metazoen in Vergleich ziehen, denn das primäre innere Keimblatt ist doch, wie unmöglich bestritten werden kann, vorläufig nichts anderes als der Keim nach Abzug des äusseren Keimblattes, der weder eine membranöse Form hat, noch auch überhaupt, wie schon mehrfach erwähnt, ganz in die membranöse Form des wirklich inneren Keimblattes aufgeht.

Vor Allem aber ist auch, so lange noch das sog. primäre innere Keimblatt besteht, die Gastrulaform nicht ausgebildet, insofern die innere membranöse Auskleidung derselben fehlt, deren Bildung auch zugleich, wie ich oben gezeigt habe, das sog. sekundäre innere Keimblatt entstehen lässt.

Man kann sich den Fortschritt in der Differenzirung des Keimes, das Auftreten einer Keimschicht zwischen den beiden Keimblättern, so vorstellen, dass eine Substanz, die in der niederer

1) Er entsteht demnach nicht später als das untere Keimblatt, sondern gleichzeitig mit denselben, ja bei einigen Metazoen ist derselbe schon im Blastosphärenstadium vor der Invagination, d. h. also vor dem Process der Keimblattbildung als solcher zu erkennen.
Reihe der Metazoen in allen Zellen des Keimes vorhanden war, bei den höher entwickelten Metazoen in einem bestimmten Theile desselben ausschliesslich depoirt wird. Dieser Theil geht dann nicht mehr mit den anderen Zellen die Umlagerung in die beiden Keimblätter ein.

Man hat nun nicht allein den Mittelkeim mittleres Keimblatt genannt, sondern hat diese Benennung zugleich auf diesen Zellcomplex übertragen, nachdem Elemente von einem der beiden Keimblätter in denselben hineingelangt waren, er also aufgehört hat ein einheitliches Gebilde zu sein. Es ist aber selbstverständlich eine wissenschaftliche Vergleichung der Keimblätter der verschiedenen Metazoen nur dann möglich, wenn man dieselben sich gegenüber stellt, so lange sie noch einerseits einheitliche, andererseits auch vollständige Gebilde repräsentiren. Denn nachdem eine theilweise Verschmelzung zweier elementarer Keimschichten und in dieser ein Austausch der Elemente stattgefunden hat, wie z. B. im Primitivstreifen der Wirbeltiere zwischen dem äusseren Keimblatte und dem Mittelkeim ein solcher stattfindet, hat die eine Keimschicht soviel an Fähigkeit, Gewebe zu bilden, verloren, als sie Elemente abgegeben hat, während die andere Keimschicht durch die Aufnahme dieser Elemente ebensoviel an Fähigkeit, Gewebe zu produciren, gewonnen hat und zwar können dies Gewebe sein, die ursprünglich dieser Keimschicht fremd waren. Ich werde dies an einem concreten Beispiele erläutern.

Bei den Wirbelthieren treten im Primitivstreifen Elemente des äusseren Keimblattes in den Mittelkeim über; nehmen wir nun an, dies wären erstens die sämmtlichen Muskel bildenden Elemente und zweitens ein Theil der Nerven bildenden Elemente, so wäre die Folge davon, wie es in der That der Fall ist, die, dass das äussere Keimblatt der ihm ursprünglich d. h. bei den niederer Metazoen eigenen Fähigkeit muskulöse Elemente zu bilden verlustig gegangen ist, während aus der Schicht des Mittelkeimes nun so- wohl Muskeln als auch Nerven entstehen; Nerven also vom äusseren Keimblatte und scheinbar auch vom Mittelkeim gebildet werden, Gewebe, die bei den diploblastischen Metazoen aus dem äusseren Keimblatte hervorgehen. In der That aber entstehn auch bei den triploblastischen Metazoen die Muskeln und Nerven nur aus den in den Mittelkeimen eingewanderten Elementen des äusseren Keimblattes, nicht aber aus dem Mittelkeime.

Ich habe oben die Wirbelthiere als ein Beispiel dafür angeführt, dass bei ihnen Elemente des äusseren Keimblattes in den Mittelkeim hineinwandern; diese Einwanderung von Keimblattelementen in den Raum zwischen die beiden Keimblätter, sei nun ein Mittelkeim vorhanden oder nicht, findet jedoch bei allen Metazoen statt, ausgenommen scheinen nur die Hydromedusen, Chaetognathen und vielleicht einige Poriferen. Es scheint mir die Einwanderung von Keimblattelementen in den Raum zwischen die beiden Keimblätter schon in einem niedersten Zustande in der Entwicklung der Metazoen aufzutreten als der Mittelkeim, d. h. als Zellen, die nicht von den Keimblättern entstanden, sondern als ein Rest der Furchungselemente übrig geblieben sind; doch lässt sich sehr schwer darüber urteilen, welche Bildung von diesen beiden in der Phylogenie die frühere ist, da dieselben ziemlich gleichzeitig auftreten und ferner die Autoren in den Resultaten der ontogenetischen Untersuchungen über diesen Punkt auseinanderweichen oder gar kein Gewicht darauf legen, woher die Elemente zwischen den beiden Keimblättern gekommen sind, sondern dieselben ohne Rücksicht auf ihre Entstehung mittleres Keimblatt nennen. Doch bin ich überzeugt, dass allein in der genauere Unterscheidung zwischen den beiden genannten Bildungen in der Axen-

1) o. a. Bd. II. H. 1. p. 311.
platte1), wie ich den Mittelkeim bezeichnet habe, nachdem in denselben Elemente vom äusseren Keimblatte (im Primitivstreifen) eingewandert sind, die Möglichkeit gegeben ist, eine Homologie der Keimblätter der Metazoen sowohl in Rücksicht auf ihre Entstehung als auch auf ihre Bedeutung für die Production bestimmter Gewebe zu finden. Bisher ist es aus Gründen, die ich auseinander gesetzt habe, den Forschern nicht gelungen, eine Homologie der Keimblätter zu finden, und doch gibt es gewiss sehr wenig Forscher, die glauben, dass eine solche nicht existire, dass eine Form wie die Gastrula, die wir bei den gesamten Metazoen finden, für die Entstehung der Gewebe ohne Bedeutung wäre.

Das ist der Fortschritt in der Entwicklung, dass nach Auftreten des Mittelkeimes die Keimblattzellen, nun befreit von aller trägen Masse, frei von der Stützsubstanz, sich ausschliesslich ihrem Berufe hingeben können. Ebenso ist es, um ein ähnliches Beispiel anzuführen, der höchste Grad der Entwicklung des Eies, wenn das-

1) Archiv f. mikr. Anat. Bd. XXI. o. c.

Vor nicht langer Zeit ist von O. und R. Hertwig\(^1\) eine eigenartige Theorie über die Entstehung und Deutung der Keimblätter aufgestellt worden. Dieselben suchen von den Chaetognathen und Brachiopoden ausgehend nachzuweisen, dass bei der einen Abtheilung der Metazoen, zu der sie auch die Wirbelthiere zählen, wie dies in ausgesprochenster Weise beim Säugethiere der Fall ist, dass der primitiven Zustand der Bedürfnisslosigkeit verlassen, unbekümmert um seine Nahrung seinen Entwicklungsverlauf vollenden kann, wie dies in ausgesprochenster Weise beim Säugethiere der Fall ist. Der Fortschritt in der Entwicklung liegt in dem grossen Princip der Arbeitstheilung.

Die beiden Keimblätter und der Mittelkeim. 445

Vor nicht langer Zeit ist von O. und R. Hertwig\(^1\) eine eigenartige Theorie über die Entstehung und Deutung der Keimblätter aufgestellt worden. Dieselben suchen von den Chaetognathen und Brachiopoden ausgehend nachzuweisen, dass bei der einen Abtheilung der Metazoen, zu der sie auch die Wirbelthiere zählen, wie dies in ausgesprochenster Weise beim Säugethiere der Fall ist. Der Fortschritt in der Entwicklung liegt in dem grossen Princip der Arbeitstheilung.

Vor nicht langer Zeit ist von O. und R. Hertwig\(^1\) eine eigenartige Theorie über die Entstehung und Deutung der Keimblätter aufgestellt worden. Dieselben suchen von den Chaetognathen und Brachiopoden ausgehend nachzuweisen, dass bei der einen Abtheilung der Metazoen, zu der sie auch die Wirbelthiere zählen, wie dies in ausgesprochenster Weise beim Säugethiere der Fall ist. Der Fortschritt in der Entwicklung liegt in dem grossen Princip der Arbeitstheilung.

2) o. c. p. 119.
Dr. W. Wolff:

homologe Bildung an die Seite stellen kann, sondern stets nur als einen Theil desselben betrachten darf, welche Veränderungen der selbe auch später eingehen mag. Nach Hertwig's Gedankengange müssten wir ebenso die Faltung des äusseren Keimblattes in der Primitivrinne der Wirbelthiere als ein paariges neues Keimblatt hinstellen dürfen; ferner könnte man mit demselben Rechte das Amnios auch als zwei neue Keimblätter betrachten, die als eine Faltenbildung aus dem äusseren Keimblatte entstanden sind. Verfolgen wir die Differenzirungen der Keimblätter und des Mittelkeimes weiter, so kommen wir, zumal wir auf die blattförmige Anlage kein besonderes Gewicht legen, annähernd zu den Primitivorganen Reichert's, doch niemals zu neuen Keimblättern.

Mit der Bildung der Rückenfurchen verändert sich das Bild beim Froschei gerade so wie beim Hühnerei vollständig und zwar im selben Sinne. Der Mittelkeim und das äussere Keimblatt abzüglich der Umhüllungshaut verschwindet von dem Bauchtheile fast vollständig, wie auch schon Götte richtig beobachtet hat, und es sammeln sich die Elemente dieser Gegend um die Rückenfurchen herum, wie Fig. 8 zeigt. Es verschmilzt ferner das äussere Keimblatt abzüglich der Umhüllungshaut (der epithelialen Bekleidung des Embryo) mit dem Mittelkeim zur Bildung der Axenplatte, Fig. 8 x. Ob sich die Anlage des Centralnervensystems und der Chorda schon vor dieser Verschmelzung differenziert, habe ich vor der Hand nicht entscheiden können; nach Analogie mit dem Huhne würden sich diese Anlagen erst aus der Axenplatte 1), wie ich die Combination des Mittelkeims mit den in ihn hineingewucherten Zellen des äusseren Keimblattes genannt habe, bilden. Nach dieser Periode tritt in der peripheren Axenplatte eine Spaltung, die spätere Bauchhöhle, auf, wodurch die Axenplatte sich in das Hautmuskel- und Darmfaserblatt trennt, gerade so wie dieser Entwicklungsvorgang bei den Vögeln und Säugethieren vor sich geht; der centrale Theil der Axenplatte gliedert sich in die Urwirbel.

Ob der durch Faltung des inneren Keimblattes bezüglich der Urdarmwandung entstehende bilaterale Hohlraum um den restirenden Theil des Urdarms der Chaetognathen und Brachiopoden, von denen die Gebrüder Hertwig in ihren Betrachtungen ausgehen, überhaupt mit der Leibeshöhle der Wirbelthiere verglichen werden kann, ist mir an und für sich sehr zweifelhaft. Wäre es so absurd, wenn man diese Ausstülpungen des Urdarms der Brachiopoden und Chatognathen mit den Ausstülpungen respective soliden Auswüchsen des Urdarms der Wirbelthiere, den grossen Darmdrüseng in Parallele stellte? Wahrscheinlicher allerdings scheint mir, dass bei den höheren Metazoen überhaupt kein Analogon dieser paarigen Ausstülpungen des Urdarms der Chaetognathen und Brachiopoden vorhanden ist und dass diese mit dem Genitalapparat in engster Beziehung stehen; bei den Brachiopoden wenigstens scheinen sie nichts weiter als ein Aufbewahrungsort der Eier zu sein, also vielleicht ein paariger Uterus genannt werden zu dürfen.

1) o. c. d. Verf. S. 51.
Erklärung der Figuren auf Tafel XXVII.

Fig. 1 a. Holoblastisches Ei mit symmetrischer Furchung. Fig. 1 b. Blastula desselben. Fig. 1 c. Gastrula desselben.

Fig. 2 a. Meroblastisches telolecithales Ei mit totaler symmetrischer Furchung. Fig. 2. Dasselbe schematisch gezeichnet. Fig. 2 b. Blastula desselben. Fig. 2 c. Gastrula desselben.

Fig. 3 a. Meroblastisches telolecithales Ei mit totaler asymmetrischer Furchung. Fig. 3. Dasselbe Ei schematisch gezeichnet. Fig. 3 b. Blastula desselben. Fig. 3 c. Gastrula desselben.

Fig. 4 a. Meroblastisches centrolecithales Ei mit symmetrischer Furchung. Fig. 4 b. Blastula desselben. Fig. 4 c. Gastrula desselben.

Fig. 5 a. Holoblastisches Ei mit asymmetrischer Furchung. Fig. 5. Dasselbe Ei als ein fast vollständig zurückgebildetes meroblastisches telolecithales Ei mit partieller Furchung gedacht. Fig. 5 b. Gastrula desselben nahezu vollendet.

Fig. 6 a. Meroblastisches telolecithales Ei mit partieller asymmetrischer Furchung und Einstülpung des unteren Bildungsdotters während der Furchung. Fig. 6 b. Gastrula desselben nahezu vollendet.

Fig. 7 a. Meroblastisches telolecithales Ei mit partieller asymmetrischer Furchung und Einstülpung des unteren Bildungsdotters vor der Furchung. Fig. 7 b. Gastrula desselben.

Fig. 8. Querschnitt eines Froschembryo im Stadium der Hirn-Rückenmarkbildung.

Archiv f. mikroskop. Anatomie. Bd. XXIII.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Legende:

- **Mt.**
- **Vsp.**
Archer I. microskop. Anatomie Bd. XXIII.

Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Archiv
für
Mikroskopische Anatomie
herausgegeben
von
v. la Valette St. George in Bonn
und
W. Waldeyer in Berlin.

Fortsetzung von Max Schultze's Archiv für mikroskopische Anatomie.

Achtundzwanzigster Band.

Erstes Heft.

Mit 9 Tafeln.

Bonn
Verlag von Max Cohen & Sohn (Fr. Cohen)
1886.

Ausgegeben 30. September 1886.
Im Verlag von MAX COHEN & SOHN (FR. COHEN) in BONN erschienen eben:

Medianschnitt einer Hochschwangeren
bei Steisslage des Fötus
nebst
Bemerkungen über die Lage und Formverhältnisse des
Uterus gravidus nach Längs- und Querschnitten von
Dr. W. Waldeyer,
Professor der Medizin und Director der anatomischen Anstalt in Berlin.
Mit 3 Holzschnitten und einem Atlas von 5 Tafeln.
Preis M 40—

Der schwangere und kreissende Uterus.
Beiträge zur Anatomie und Physiologie der Geburtskunde.

Unter Mitwirkung von
Dr. M. Hofmeier, Dr. C. Ruge und Dr. C. H. Stratz,
Assistenten an der Kgl. Universitäts-Frauenklinik zu Berlin,
herausgegeben von

Dr. Karl Schroeder,
Geheimer Medicinalrath und Professor der Geburtshülfe in Berlin,
Director der Universitäts-Frauenklinik und Mitglied der wissenschaftlichen Deputation für das Medicinalwesen,
Mit 52 in den Text gedruckten Holzschnitten und einem Atlas von 6 Tafeln. Preis M 48—

Universitäts-Buchdruckerei von Carl Georgi in Bonn.
Archiv
für
Mikroskopische Anatomie
herausgegeben
von
v. la Valette St. George in Bonn
und
W. Waldeyer in Berlin.

Fortsetzung von Max Schultze's Archiv für mikroskopische Anatomie.

Achtundzwanzigster Band.

Zweites Heft.

Mit 6 Tafeln.

Bonn
Verlag von Max Cohen & Sohn (Fr. Cohen)
1886.
Inhalt.

Ueber den Bau des Corpus ciliare und der Iris von Säugethieren. Von Dr. med. A. Dostoiewsky aus St. Petersburg. Hierzu Tafel X und XI. (Aus dem anatomischen Institut zu Berlin.) 91

Ueber den feineren Bau des Pferdehufes. Von Dr. C. Nörner. Hierzu Tafel XV. (Arbeit aus dem thierphysiologischen Laboratorium der landwirthschaftlichen Hochschule zu Berlin.) 171
Eben erschienen:

Lehrbuch der Geburtshülfe

mit Einschluss der
Pathologie der Schwangerschaft und des Wochenbettes

von

Dr. Karl Schroeder,
Geheimer Medicinalrath und Professor der Geburtshülfe in Berlin,
Director der Universitäts-Frauenklinik und Mitglied der wissenschaftlichen Deputation
für das Medicinalwesen.

Neunte neu bearbeitete Auflage.

Mit 151 Holzschnitten.

Preis M 16,— gebunden M 18.—

Verlag von Max Cohen & Sohn (Fr. Cohen) in Bonn.
Im Verlag von MAX COHEN & SOHN (FR. COHEN) in BONN erschienen eben:

Medianschnitt einer Hochschwangeren bei Steisslage des Fötus
nebst Bemerkungen über die Lage und Formverhältnisse des Uterus gravidus nach Längs- und Querschnitten
von Dr. W. Waldeyer,
Professor der Medizin und Director der anatomischen Anstalt in Berlin.
Mit 3 Holzschnitten und einem Atlas von 5 Tafeln.
Preis Mk. 40—

Der schwangere und kreissende Uterus.
Beiträge zur Anatomie und Physiologie der Geburtskunde.
Unter Mitwirkung von Dr. M. Hofmeier, Dr. C. Ruge und Dr. C. H. Stratz,
Assistenten an der Kgl. Universitäts-Frauenklinik zu Berlin,
herausgegeben von Dr. Karl Schroeder,
Geheimer Medicinalrath und Professor der Geburtshülfe in Berlin,
Director der Universitäts-Frauenklinik und Mitglied der wissenschaftlichen Deputation für das Medicinalwesen.
Mit 52 in den Text gedruckten Holzschnitten und einem Atlas von 6 Tafeln. Preis Mk. 48—

Universitäts-Buchdruckerei von Carl Georgi in Bonn.
Archiv
für
Mikroskopische Anatomie
herausgegeben
von
v. la Valette St. George in Bonn
und
W. Waldeyer in Berlin.

Fortsetzung von Max Schultze's Archiv für mikroskopische Anatomie.

Achtundzwanzigster Band.

Drittes Heft.

Mit 6 Tafeln.

Bonn
Verlag von Max Cohen & Sohn (Fr. Cohen)
1886.

Ausgegeben 5. November 1886.
Inhalt.

Beiträge zur Entwicklungsgeschichte der Knochenfische.
 Von K. F. Wenckebach, med. cand. in Utrecht 225
 Hierzu Tafel XVI u. XVII.

Zur Morphologie wandernder Leukocyten.
 Von Dr. Joseph Heinrich List in Graz 251
 Hierzu Tafel XVIII.

Untersuchungen an der Hypophyse einiger Säugethiere und
 des Menschen.
 Von Salomon Lothringer aus Bohrka (Oesterreich) ... 257
 Hierzu Tafel XIX und XX.

Ueber Chylusgefassssysteme bei Enchytraeiden.
 Von Dr. W. Michaelsen in Hamburg 292
 Hierzu Tafel XXI.

Eben erschien:

Lehrbuch der Geburtshülfe
 mit Einschluss der
 Pathologie der Schwangerschaft und des
 Wochenbettes

von

Dr. Karl Schroeder,
 Geheimer Medicinalrath und Professor der Geburtshülfe in Berlin,
 Director der Universitäts-Frauenklinik und Mitglied der wissenschaftlichen Deputation
 für das Medicinalwesen.

Neunte neu bearbeitete Auflage.

Mit 151 Holzschnitten.

Preis M 16., gebunden M 18.

Verlag von Max Cohen & Sohn (Fr. Cohen) in Bonn.
Prachtvolle Festgeschenke:

La Madonna di San Sisto (Sixtina).

Nach Rafael's Gemälde in der Königlichen Gallerie in Dresden gezeichnet und in Kupfer gestochen
von

Joseph Keller.

Epreuve d'Artiste \(M \ 300 \).— Avant la lettre chines. \(M \ 195 \).
Avant la lettre weiss \(M \ 150 \).— Mit der Schrift chines. \(M \ 105 \).
Mit der Schrift weiss \(M \ 75 \).

Von allen Nachbildungen der Sixtinischen Madonna unbedingt die dem Original am Nächsten kommende, der glänzendste und dekorativste aller vorhandenen Kupferstiche.

La Vierge au Linge
(Madonna mit dem Schleier).

Nach Rafael's Gemälde in der Gallerie des Louvre in der Grösse des Originals gezeichnet und in Kupfer gestochen
von

J. Kohlschein.

Epreuve de Remarque \(M \ 600 \).— Epreuve d'Artiste \(M \ 240 \).
Avant la lettre chines. \(M \ 150 \).— Avant la lettre weiss \(M \ 135 \).
Mit der Schrift chines. \(M \ 75 \).— Mit der Schrift weiss \(M \ 60 \).

Aufträge übernehmen zu obigen Preisen alle in- und ausländischen Buch- und Kunsthändlungen wie auch die Verlagshandlung, welche ausdrücklich garantiert, dass nur tadellose Abdrücke zur Versendung kommen.
Im Verlag von MAX COHEN & SOHN (FR. COHEN) in BONN erschienen eben:

Medianschnitt einer Hochschwangeren bei Steisslage des Fötus

nebst
Bemerkungen über die Lage und Formverhältnisse des
Uterus gravidus

nach Längs- und Querschnitten

von

Dr. W. Waldeyer,

Professor der Medizin und Director der anatomischen Anstalt in Berlin.

Mit 3 Holzschnitten und einem Atlas von 5 Tafeln.

Preis M 40—

Der schwangere und kreissende Uterus.

Beiträge zur Anatomie und Physiologie der Geburtskunde.

Unter Mitwirkung von

Dr. M. Hofmeier, Dr. C. Ruge und Dr. C. H. Stratz,

Assistenten an der Kgl. Universitäts-Frauenklinik zu Berlin,

herausgegeben von

Dr. Karl Schroeder,

Geheimer Medicinalrath und Professor der Geburtshülfe in Berlin,

Director der Universitäts-Frauenklinik und Mitglied der wissenschaftlichen Deputation für das Medicinalwesen,

Mit 52 in den Text gedruckten Holzschnitten und einem Atlas von 6 Tafeln. Preis M 48—

Universitäts-Buchdruckerei von Carl Georgi in Bonn,
Archiv
für
Mikroskopische Anatomie

herausgegeben
von

v. la Valette St. George in Bonn

und

W. Waldeyer in Berlin.

Fortsetzung von Max Schultze's Archiv für mikroskopische Anatomie.

Achtundzwanzigster Band.

Viertes Heft.

Mit 6 Tafeln.

Bonn
Verlag von Max Cohen & Sohn (Fr. Cohen)
1886.

Inhalt

Studien zur vergleichenden Histologie der Retina.
Von Dr. P. Schiefferdecker, Prosector in Göttingen ... 305
Hierzu Tafel XXII, XXIII u. XXIV.

Ueber die Regeneration der glatten Muskeln.
Von Dr. H. Stilling und Dr. W. Pfitzner, Privatdocenten
in Strassburg 396
Hierzu Tafel XXV.

Bemerkungen über Secretion und Bau der Schleimdrüsen.
Von Ed. Paulsen in Kiel 413

Zur Kenntniss des Blasenepithels einiger Schildkröten (Testudo
graeca und Emys europaea).
Von Dr. Joseph Heinrich List 416
Hierzu Tafel XXVI.

Einige Beobachtungen an den Negern und Buschmännern
Afrika's.
Von Dr. W. Wolff in Berlin 421

Die beiden Keimblätter und der Mittelkeim.
Von Dr. W. Wolff in Berlin 425
Hierzu Tafel XXVII.

Verlag von August Hirschwald in Berlin.

Soeben erschien:

Grundriss
der
Bakterienkunde
von Dr. med. Carl Fraenkel,
Assistent am hygienischen Institut in Berlin.

1887. gr. 8. Preis 8. M.
Prachtvolle Festgeschenke:

La Madonna di San Sisto (Sixtina).

Nach Rafael's Gemälde in der Königlichen Gallerie in Dresden gezeichnet und in Kupfer gestochen von

Joseph Keller.

Epreuve d'Artiste M 300.- Avant la lettre chines. M 195.-
Avant la lettre weiss M 150.- Mit der Schrift chines. M 105.-
Mit der Schrift weiss M 75.-

Von allen Nachbildungen der Sixtinischen Madonna unbedingt die dem Original am Nächsten kommende, der glänzendste und dekorativste aller vorhandenen Kupferstiche.

La Vierge au Linge
(Madonna mit dem Schleier).

Nach Rafael's Gemälde in der Gallerie des Louvre in der Grösse des Originals gezeichnet und in Kupfer gestochen von

J. Kohlschein.

Epreuve de Remarque M 600.- Epreuve d'Artiste M 240.-
Avant la lettre chines. M 150.- Avant la lettre weiss M 135.-
Mit der Schrift chines. M 75.- Mit der Schrift weiss M 60.-

Aufträge übernehmen zu obigen Preisen alle in- und ausländischen Buch- und Kunsthändlungen wie auch die Verlagshandlung, welche ausdrücklich garantiert, dass nur tadellose Abdrücke zur Versendung kommen.
Medianschnitt
einer Hochschwangeren
bei Steisslage des Fötus

nebst
Bemerkungen über die Lage und Formverhältnisse
des
Uterus gravidus
nach Längs- und Querschnitten

von
Dr. W. Waldeyer,
Professor der Medizin und Director der anatomischen Anstalt in Berlin.

Mit 3 Holzschnitten und einem Atlas von 5 Tafeln.

Preis M. 40.—

Der schwangere und kreissende Uterus.
Beiträge zur Anatomie und Physiologie
der Geburtskunde.

Unter Mitwirkung von
Dr. M. Hofmeier, Dr. C. Ruge und Dr. C. H. Stratz,
Assistenten an der Kgl. Universitäts-Frauenklinik zu Berlin,
herausgegeben von
Dr. Karl Schroeder,
Geheimer Medicinalrat und Professor der Geburtshülfe in Berlin,
Director der Universitäts-Frauenklinik und Mitglied der wissenschaftlichen Deputation für das Medicinalwesen.

Mit 52 in den Text gedruckten Holzschnitten und einem Atlas von 6 Tafeln. Preis M. 48.—
Soeben erschien:

Bibliotheca zoologica II.

Verzeichniss der Schriften über Zoologie welche in den periodischen Werken enthalten und vom Jahre 1861 bis 1880 selbständig erschienen sind.

Mit Einschluss der allgemein-naturgeschichtlichen, periodischen und palaeontologischen Schriften.

Bearbeitet von

Dr. O. Taschenberg

Docent an der Universität Halle.

Erste Lieferung: Sign. 1—40. gr. S. Preis ☢ 7.—.

Die im Jahre 1861 erschienene »Bibliotheca zoologica« enthält die von 1846—1860 publicirte zoologisch-biologische Literatur; seit 1878 begann Prof. V. Carus im »Zoologischen Anzeiger« dieselbe in regelmässiger Folge bekannt zu geben. Die Lücke zwischen 1861 und mindestens 1878 auszufüllen, erschien um so dringender geboten, als die Literatur inzwischen zu ungeheurem Umfang angewachsen und Gefahr vorhanden war, die Übersicht allmählich ganz zu verlieren. Die aussergewöhnlichen Schwierigkeiten, die sich der Lösung dieser Aufgabe entgegenstellen, zu überwinden, ist dem jetzigen Bearbeiter, wie zu hoffen, soweit gelungen, als es bei derartigen

Berichtigungen und Zusätze, bei einem derartigen Werke kaum zu vermeiden, werden gern entgegengenommen und bittet man solche an den Herrn Herausgeber (Halle a/S.) gelangen zu lassen; sie werden am Schlusse des Ganzen unter den Nachträgen folgen.

Die »Bibliotheca zoologica« soll nicht nur dem Zoologen, Biologen, vergleichenden Anatomie, überhaupt dem Naturforscher dienen, sondern auch für den Bibliothekar und Buchhändler ein zuverlässiger Rathgeber sein; letztern Zweck versucht sie namentlich auch durch möglichst vollständige Preisangaben zu erreichen.

Die jetzige »Bibliotheca zoologica II« wird in etwa 12 Lieferungen à 7 M, je 40 Signaturen (à 8 Seiten), oder in 4 starken Bänden erscheinen und voraussichtlich Anfang 1888 vollendet vorliegen. Die zweite Lieferung (Sign. 41—80) wird noch vor Ende d. J. ausgegeben. Die Lieferungen können zur Ansicht durch jede Buchhandlung bezogen werden; Prospecte gratis.

Eine kleine Anzahl von Exemplaren ist auf Velinpapier, in grösserem Formate, abgezogen worden; dieselben stehen zum Preise von M 12 pro Lieferung, jedoch nur fest, zur Verfügung.

Der Preis für die Ausgabe von 1861 (2 Bände) wird von jetzt ab auf M 16 herabgesetzt. Zu Bestellungen bittet man den nachstehenden Verlangzettel zu benutzen.

Wilhelm Engelmann.

Druck von Breitkopf & Härtel in Leipzig.
Verlag von WILHELM ENGELMANN in Leipzig.

Von Herrn ___________________ Buchhandlung

in ___________________________ verlange:

<table>
<thead>
<tr>
<th>fest</th>
<th>zur Ansicht</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bibliotheca zoologica II. Lief. 1.

— „ — ” — auf Velin.

— „ — ” 1861 (Preis M 16.—).

Ort und Datum: ___________________________ Name: ___________________________